Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3300 = ( 33 )100 = 27100
5200 = ( 52 )100 = 25100
Vì 27 + 25 = 52 ⋮ 13 ⇒ 27100 + 25100 ⋮ 13 ⇒ 3300 + 5200 ⋮ 13
Vậy 3300 + 5200 ⋮ 13
a) \(n^3-4n=n\left(n^2-4\right)=\left(n-2\right)n\left(n+2\right)\)
vì n chẵn nên đặt n=2k
\(=>\left(2k-2\right).2k.\left(2k+2\right)=8\left(k-1\right)k\left(k+1\right)\)
vì \(\left(k-1\right)k\left(k+1\right)\)là 3 số tn liên tiếp =>chia hết cho 2
=>\(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16
\(n^3+4n=n^3-4n+8n\)
đặt n=2k
=>\(8\left(k-1\right)k\left(k+1\right)+16k\)
mà \(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16 nên \(8\left(k-1\right)k\left(k+1\right)+16k\)chia hết cho 16
Ta có: n5−n=n(n4−1)=n(n−1)(n+1)(n2+1)
CM n5−n⋮3
Ta thấy n,n+1,n−1 là ba số nguyên liên tiếp nên chắc chắn tồn tại một số chia hết cho 3
⇒n(n−1)(n+1)⋮3⇔n5−n⋮3(1)
CM n5−n⋮5
+) n≡0(mod5)⇒n5−n=n(n−1)(n+1)(n2+1)⋮5
+) n≡1(mod5)⇒n−1≡0(mod5)⇒n5−n=n(n−1)(n+1)(n2+1)⋮5
+) n≡2(mod5)⇒n2≡4(mod5)⇒n2+1≡0(mod5)
⇒n5−n=n(n−1)(n+1)(n2+1)⋮5
+) n≡3(mod5)⇒n2≡9(mod5)⇒n2+1≡0(mod5)
⇒n5−n=n(n−1)(n+1)(n2+1)⋮5
+) n≡4(mod5)⇒n+1≡0(mod5)
⇒n5−n=n(n+1)(n−1)(n2+1)⋮5
Do đó, n5−n⋮5(2)
CM n5−n⋮16
Vì n lẻ nên đặt n=4k+1;4k+3 Khi đó:[n2=16k2+1+8kn2=16k2+9+24k⇒ n2≡1(mod8)
⇒n2−1⋮8
Mà n lẻ nên n2+1⋮2
Do đó n5−n=n(n2−1)(n2+1)⋮16(3)
Từ (1),(2),(3)⇒n5−n⋮(16.3.5=240) (đpcm)
Chúc bạn học tốt!
\(3^{15}+3^{16}+3^{17}=3^{15}\left(1+3+9\right)=3^{15}.13⋮13\)
315 + 316 + 317
= 315 + 315 . 3 + 315 . 32
= 315( 1 + 3 + 32 )
= 315 . 13
=> 315 . 13 chia hết cho 13
=> 315 + 316 + 317 chia hết cho 13
Ta có: M = 315 + 316 + 317 = 315 . (1 + 3 + 32) = 315 . 13 chia hết cho 13
Vậy M chia hết cho 13.
Ta có M=\(^{3^{15}\times\left(1+3+3^2\right)}\)=\(3^{15}\times13\)
Mà 13 chia hết cho 13\(\Rightarrow3^{15}\times13\)chia hết cho 13 hay M chia hết cho 13
Câu a:
TH1 : $n = 3k$
thì $2^n - 1 = 2^{3k} - 1 = 8^k - 1 = (8-1)A = 7A$ chia hết cho $7$
TH2 : $n = 3k+1$
thì $2^n - 1 = 2^{3k+1} - 1 = 2\cdot 8^{k} - 1 = 2(8^k - 1) + 1 = 2\cdot (8-1)A + 1 = 2\cdot 7A + 1$ chia $7$ dư $1$ nên $2^n-1$ không chia hết cho $7$
TH3 : $n = 3k+2$
thì $2^n - 1 = 2^{3k+2} - 1 = 4\cdot 8^k - 1 = 4(8^k - 1) + 3 = 4\cdot (8 - 1)A + 3 = 4\cdot 7A + 3$ chia $7$ dư $3$ nên $2^n-1$ không chia hết cho $7$
Vậy với mọi $n \in \mathbb{Z^+}$ chia hết cho $3$ thì $2^n-1$ chia hết cho $7$
-Nguyễn Thành Trương-
Câu 1b)
+ Với n = 2 ⇒ 3^2−1=8 chia hết cho 8
+ Giả sử với n = k ( k > 1) thì 3^k−1 cũng chia hết cho 8
+ Ta phải chức minh với n = k + 1 thì 3^n − 1 cũng chia hết cho 8 3^n−1=3^k+1−1=3.3^k−1=3.3^k−3=8=3(3^k−1)+8
Ta có 3^k−1 chia hết cho 8
⇒3(3^k−1)chia hết cho 8; 8 chia hết cho 8
=> 3^k+1−1 chia hết cho 8
Kết luận 3^n−1 chia hết cho 8 với n∈N