K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để chứng minh điều trên ta xét dãy số: 

\(A=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(3A=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)

\(3A+A=\left(3-3^2+3^3-...-3^{100}\right)+\left(1-3+...+3^{98}-3^{99}\right)\)

\(4A=1-3^{100}\)

\(A=\dfrac{1-3^{100}}{4}\)

=> \(1-3^{100}⋮4\)

hay  \(3^{100}:4\) ( dư 1) (đcpcm)

 

 

 

 

24 tháng 10 2015

Ta có: 31+32+33+…+399+3100

=(31+32)+(33+34)+…+(399+3100)

=3.(1+3)+33.(1+3)+…+399.(1+3)

=3.4+33.4+…+399.4

=(3+33+…+399).4 chia hết cho 4

=>31+32+33+…+399+3100 chia hết cho 4

24 tháng 10 2015

Đặt   \(A=3+3^2+3^3+...+3^{99}+3^{100}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)

\(=3\left(1+3\right)+3^{ 3}\left(1+3\right)+...+3^{99}\left(1+3\right)\)

\(=\left(1+3\right)\left(3+3^3+...+3^{99}\right)\)

\(=4\left(3+3^3+...+3^{99}\right)\)

Vì 4 chia hết cho 4 nên \(4\left(3+3^3+...+3^{99}\right)\)

Vậy A chia hết cho 4

14 tháng 1 2019

a) Ta có : M = 3 + 32  + 33 + ... + 3100

=> M = (3 + 32) + (33 + 34) + ... + (399 + 3100)

=> M = 12 + 32(3 + 32) + ... + 398(3 + 32)

=> M = 12 + 32.12 + ... + 398.12

=> M = 12(1 + 32 + ... + 398\(⋮\)12

Do 12 = 3 . 4 \(⋮\)4 => M \(⋮\)4

b) Ta có: 2m + 3 = 3

=> 2m = 3 - 3

=> 2m = 0

=> m = 0 : 2

=> m = 0

15 tháng 7 2016

Đặt A = 1/3 + 2/3² + 3/3³ + 4/3^4 + ... + 100/3^100 

=> 3A= 1 + 2/3 + 3/3² + 4/3³ + .... + 100/3^99 

=> 3A-A = 1 + (2/3 - 1/3) + (3/3² - 2/3²) +...+ (100/3^99 - 99/3^99) - 100/3^100

=> 2A= 1+ 1/3 + 1/3² + 1/3³ +...+ 1/3^99 - 100/3^100

Đặt B = 1/3 + 1/3² + 1/3³ +...+ 1/3^99 

=> 3B = 1 + 1/3 + 1/3² + 1/3³ +...+ 1/3^98

=> 2B = 1 - 1/3^99 => B = (1 - 1/3^99)/2

Thay vào 2A => 2A= 1+ 1/2 - 1/(2x3^99) - 100/3^100 < 1+ 1/2 = 3/2 

=> A < 3/4

....

15 tháng 7 2016

Ý Trước

3 tháng 8 2016

Đặt B = 42004 + 42003 + ... + 42 + 4 + 1 (có 2005 số; 2005 chia 2 dư 1)

B = (42004 + 42003) + (42002 + 42001) + ... + (42 + 4) + 1

B = 42003.(4 + 1) + 42002.(4 + 1) + ... + 4.(4 + 1) + 1

B = 42003.5 + 42002.5 + ... + 4.5 + 1

B = 5.(42003 + 42002 + ... + 4) + 1 chia 5 dư 1

=> B = 5.k + 1 (k là số chia hết cho 4)

=> A = 75.(5.k + 1) + 25

=> A = 75.5k + 75 + 25

=> A = (...00) + 100

=> A = (...00) chia hết cho 100 (đpcm)

4 tháng 8 2016

Đặt B = 42004 + 42003 + ... + 42 + 4 + 1 (có 2005 số; 2005 chia 2 dư 1)

B = (42004 + 42003) + (42002 + 42001) + ... + (42 + 4) + 1

B = 42003.(4 + 1) + 42002.(4 + 1) + ... + 4.(4 + 1) + 1

B = 42003.5 + 42002.5 + ... + 4.5 + 1

B = 5.(42003 + 42002 + ... + 4) + 1 chia 5 dư 1

=> B = 5.k + 1 (k là số chia hết cho 4)

=> A = 75.(5.k + 1) + 25

=> A = 75.5k + 75 + 25

=> A = (...00) + 100

=> A = (...00) chia hết cho 100 (đpcm)

11 tháng 9 2016

Sai đề rồi

11 tháng 9 2016

Ai mún nhờ mk giải violympic vòng 1 300 đ ko

10 nghìn 1 lần nhé hoặc là xóa nick facebook (20 nghìn 1 lần)

Hoặc Hack facebook (10 nghìn 1 lên 500 )