Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là ƯC của 2.n+5 va 3.n +7
2.n+5 chia hết cho x=> 3{2n+5} chia hết cho x
3n+7 chia hết cho x => 2{3n+7} chia hết cho x
3{2n+5} - 2{3n+7chia hết cho x
6n+15 - 6n+14 chia hết cho x
=>1 chia hết cho x
Gọi ƯC(2n+5,3n+7)=d
Ta có: 2n+5 chia hết cho d=>3.(2n+5)=6n+15 chia hết cho d
3n+7 chia hết cho d=>2.(3n+7)=6n+14 chia hết cho d
=>6n+15-(6n+14) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯC(2n+5,3n+7)=1
=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
câu b tương tự
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
Gọi ƯCLN( 2n+5, 3n+7) là d
Ta có :
2n+5 chia hết cho d
=> 3(2n+5) chia hết cho d
<=> 6n+15 chia hết cho d (1)
3n+7 chia hết cho d
=> 2(3n+7) chia hết cho d
<=> 6n+14 chia hết cho d (2)
=> (6n+15) - ( 6n+14) chia hết cho d hay 1 chia hết cho d
--> 2n+5, 3n+7 nguyên tố cùng nhau (đpcm)
a) 2n + 5 3n + 7
Gọi d là ƯCLN của 2n + 5 và 3n + 7 ( d e N* )
Ta có : 2n + 5 \(⋮\) d ( 1 )
hay 3. ( 2n + 5 ) \(⋮\)d = 6n + 5 \(⋮\) d
3n + 7 \(⋮\)d ( 2 )
hay 2.( 3n + 7 ) \(⋮\)d = 6n + 7 \(⋮\)d
Từ ( 1 ) và ( 2 ) suy ra ( 6n + 7 ) - ( 6n + 5 ) \(⋮\)d
hay 2 \(⋮\)d suy ra d = 1 và 2
Suy ra ƯCLN ( 2n + 5 ; 3n + 7 ) = 1
Vậy hai số đó là số nguyên tố cùng nhau.
Câu còn lại bạn làm tương tự nhé
a) 2n +5 và 3n+7
Đặt d=UCLN(2n+5;3n+7)
ta có: 2n+5 chia hết cho d=> 3(2n + 5)=6n+15 chia hết cho d
3n+7 chia hết cho d => 2(3n+7)=6n+14 chia hết cho d
=> (6n+15)-(6n+14)=1 chia hết cho d
=> d =1
vậy 2n+3 và 3n+7 là 2 số nguyên tố cùng nhau
b) 5n +7 và 3n+4
Đặt d = UCLN(5n+7;3n+4)
ta có: 5n+7 chia hết cho d => 3(5n+7)=15n+21 chia hết cho d
3n+4 chia hết cho d =>5(3n+4)=15n+20 chia hết cho d
=> (15n+21) - (15n+20)=1 chia hết cho d
=>d=1
vậy 5n+7 và 3n+4 là 2 số nguyên tố cùng nhau
gọi ƯCLN(2n+5, 3n+7) là d
ta có 2n+5 chia hết cho d => 3(2n+5) chia hết cho d <=> 6n+15 chia hết cho d(1)
3n+7 chia hết cho d => 2(3n+7) chia hết cho d <=> 6n+14 chia hết cho d(2)
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+5, 3n+7 nguyên tố cùng nhau(đpcm)
gọi UCLN(2n+5, 3n+7) là d
ta có 2n+5 chia hết cho d => 3(2n+5) chia hết cho d <=> 6n+15 chia hết cho d(1)
3n+7 chia hết cho d => 2(3n+7) chia hết cho d <=> 6n+14 chia hết cho d(2)
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+5, 3n+7 ngtố cùng nhau(đpcm)
a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
gọi UCLN(2n+5, 3n+7) là d
ta có 2n+5 chia hết cho d => 3(2n+5) chia hết cho d <=> 6n+15 chia hết cho d(1)
3n+7 chia hết cho d => 2(3n+7) chia hết cho d <=> 6n+14 chia hết cho d(2)
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+5, 3n+7 ngtố cùng nhau(đpcm)