\(2\left(a^3+b^3\right)\) ≥ \(\left(a+b\right)\left(a^2+b^2\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018

Ta có:

\(2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)

\(\Rightarrow2\left(a+b\right)\left(a^2-ab+b^2\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)

\(\Rightarrow2\left(a^2-ab+b^2\right)\ge a^2+b^2\)

\(\Rightarrow2a^2-2ab+2b^2\ge a^2+b^2\)

\(\Rightarrow\left(a^2+b^2-2ab\right)+a^2+b^2\ge a^2+b^2\)

\(\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

13 tháng 8 2017

4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)

=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2

=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc

Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)

13 tháng 8 2017

1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0

=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm

29 tháng 12 2017

Câu hỏi của Nguyễn Thiều Công Thành - Toán lớp 9 - Học toán với OnlineMath

23 tháng 1 2019

cái này sai rồi nha.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

23 tháng 1 2019

toán lớp 9 chơ

1 tháng 3 2018

Xét : a^3+b^3-ab.(a+b)

= (a+b).(a^2-ab+b^2)-ab.(a+b)

= (a+b).(a^2-2ab+b^2)

= (a+b).(a-b)^2 >= 0 ( vì a;b > 0 )

=> a^3+b^3 >= ab.(a+b)

<=> (a+b)^3 = a^3+b^3+3ab.(a+b) < = a^3+b^3+3a^3+3b^3 = 4a^3+4b^3

Tương tự ........

=> (a+b)^3 + (b+c)^3 + (c+a)^3 < = 8a^3+8b^3+8c^3 = 8.(a^3+b^3+c^3)

=> ĐPCM

Tk mk nha

16 tháng 8 2017

Áp dụng bđt Cauchy Schwarz dưới dạng Engel ta có :

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(c+b\right)^2}{a}+\frac{\left(a+c\right)^2}{b}\ge\frac{\left(a+b+c+b+c+a\right)^2}{a+b+c}\)

\(=\frac{\left(2a+2b+2c\right)^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

10 tháng 4 2017

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

10 tháng 4 2017

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng

28 tháng 2 2018

\(\Leftrightarrow4\left(a^3+b^3\right)-\left(a+b\right)^3\ge0\)

\(\Leftrightarrow4a^3+4b^3-a^3-3a^2b-3ab^2-b^3\ge0\)

\(\Leftrightarrow a^3+b^3-a^2b-ab^2\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)(luôn đúng)

\(\Rightarrowđpcm\)