\(2^{2^{2n}}+5⋮7\) với mọi \(n\in N\) (Dùng quy nạp)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

\(A=\left(2^{2^{2n}}+5\right)⋮7,\forall n\in N\) (1)

- Với n=0 ta có \(A=2^{2^{2n}}+5=7⋮7\)

Vậy (1) đúng với n=0

- Giả sử (1) cũng đúng với n=k, hay \(\left(2^{2^{2k}}+5\right)⋮7\)

\(\Rightarrow2^{2^{2k}}=7m-5\left(m\in N\right)\)

- Ta sẽ c/m (1) cũng đúng với n=k+1, tức là phải c/m:

\(\left(2^{2^{2k+2}}+5\right)⋮7\)

\(A=2^{2^{2k+2}}+5=2^{2^{2k}.4}=\left(2^{2^{2k}}\right)^4+5=\left(7m-5\right)^4+5\)

\(=\left(7K+25\right)^2+5=7M+25^2+5=7M+630\)

Dễ thấy \(\left(7M+630\right)⋮7\)

Hay (1) đúng với n=k+1

Ta có (1) đúng với n=0; với n=k; với n=k+1 nên theo nguyên lý quy nạp (1) đúng \(\forall n\in N\)

p/s: mk ko chắc lắm đâu, nếu có sai sót bn để lại bình luận nhé!

lũy thừa cũng có t/c như dòng thứ 8 à bạn ? Cái chỗ :

\(2^{2^{2k}.4}=\left(2^{2^{2k}}\right)^4\) ấy

23 tháng 11 2018

Akai Haruma

Nguyễn Việt Lâm

- Giải giúp em với ạ :(

12 tháng 2 2019

Áp dụng Fermat nhỏ là xong nhé