Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)gọi UCLN(2n+5, 3n+7) là d
ta có 2n+5 chia hết cho d => 3(2n+5) chia hết cho d <=> 6n+15 chia hết cho d(1)
3n+7 chia hết cho d => 2(3n+7) chia hết cho d <=> 6n+14 chia hết cho d(2)
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+5, 3n+7 ngtố cùng nhau(đpcm)
gọi d=(2n+3; 3n+4)
=> 3(2n+3) - 2(3n+4)= 1 chia hết cho d
=> d =1
vậy 2 số là 2 số nguyên tố cùng nhau
a) Gọi ƯC(3n + 4; 2n + 3) = d
=> 3n + 4 ⋮ d => 2(3n + 4) ⋮ d hay 6n + 8 ⋮ d (1)
=> 2n + 3 ⋮ d => 3(2n + 3) ⋮ d hay 6n + 9 ⋮ d (2)
Từ (1) và (2) => 6n + 9 - 6n - 8 ⋮ d
hay 1 ⋮ d => d ∈ Ư(1) = 1
=> d = 1 hay ƯC(3n + 4; 2n + 3) = 1
Vậy 3n + 4 và 2n + 3 là 2 số nguyên tố cùng nhau
b) làm tương tự ( nhân 2 vào vế n + 5 )
a) Đặt (3n + 4, 2n + 3) = d
\(\Rightarrow\hept{\begin{cases}3n+4⋮d\Rightarrow2\left(3n+4\right)⋮d\Rightarrow6n+8⋮d\\2n+3⋮d\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\end{cases}}\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy...
a) Gọi ƯCLN(3n+1,6n+1)=d
=> 3n+1 và 6n+1 chia hết chưa d
=> 2(3n+1) và 6n+1 chia hết chưa d
=>6n+2 và 6n+1 chia hết cho d
=>(6n+2)-(6n+1)=1 chia hết cho d
=>d=1
=> 3n+1 và 6n+1 nguyên tố cùng nhau
b, Gọi ƯCLN(2n+3,3n+4)=d
=>2n+3 và 3n+4 chia hết cho d
=>3(2n+3) và 2(3n+4) chia hết cho d
=>6n+9 và 6n+8 chia hết cho d
=>(6n+9)-(6n+8)=1 chia hết cho d
=>d=1
=>2n+3 và 3n+4 nguyên tố cùng nhau
a) 2 số đó có dạng a ; a + 1
ĐẶt UCLN(a ; a + 1) = d
a chia hết cho d
a + 1 chia hết cho d
=> [(a + 1) - a] chia hết cho d
1 chia hết cho d => d = 1
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau
Tương tự
a) ) Gọi d là ƯC (n, n + 1)=> (n + 1) - n chia hết cho d=> d = 1. Vậy n và n + 1 là hai số nguyên tố cùng nhau.
dễ
a) Đặt ƯCLN ( 2n + 1 ; 4n + 3 ) = d
=> 2n + 1 chia hết cho d
=> 4n + 3 chia hết cho d
=> 2 . ( 2n + 1 ) chia hết cho d
ta có :
4n + 3 - 2 . ( 2n + 1 ) chia hết cho d
=> 4n + 3 - 4n + 2 chia hết cho d
=> 1 chia hết cho d
=> d = 1
do đó ƯCLN ( 2n + 1 ; 4n + 3 ) = 1
vậy 2n + 1 và 4n + 3 là hai số nguyên tố cùng nhau
b) Gọi d là ƯCLN ( 2n + 3 ; 3n + 4 )
=> 2n + 3 chia hết cho d => 3 . ( 2n + 3 ) chia hết cho d ( 1 )
=> 3n + 4 chia hết cho d => 2 . ( 3n + 4 ) chia hết cho d ( 2 )
từ ( 1 ) và ( 2 ) ta có :
3 . ( 2n + 3 ) - 2 . ( 3n + 4 ) chia hết cho d
=> 6n + 9 - 6n + 8 chia hết cho d
=> 1 chia hết cho d
=> d = 1
do đó ƯCLN ( 2n + 3 ; 3n + 4 ) = 1
vậy 2n + 3 và 3n + 4 là hai số nguyên tố cùng nhau
câu a : xem lại đề
b:
gọi UCLN(2n+3;4n+8)=d
ta có :
2n+3 chia hết cho d => 2(2n+3) chia hết cho d =>4n+6 chia hết cho d
4n+8 chia hết cho d
=>(4n+8)-(4n+6) chia hết cho d
=>2 chia hết cho d
=>d thuộc U(2)={1;2}
nếu d=2
htif 2n+3 ko chia hết cho 2
=>d=1
=>UCLN(..)=1
=>dpcm
a) gọi UCLN(2n+5, 3n+7) là d
ta có 2n+5 chia hết cho d => 3(2n+5) chia hết cho d <=> 6n+15 chia hết cho d(1)
3n+7 chia hết cho d => 2(3n+7) chia hết cho d <=> 6n+14 chia hết cho d(2)
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+5, 3n+7 ngtố cùng nhau(đpcm)