Chương trình khuyến mại lớn nhất năm: Lì xì đầu xuân - Nhân đôi gói VIP, xem ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cmr 1/2+2/2^2+3/2^3+...+100/2^100<2
Dat \(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{100}{2^{100}}\)
=> \(2A=1+1+\frac{3}{2^2}+...+\frac{100}{2^{99}}\)
=> \(2A-A=1+1+\frac{3}{2^2}+...+\frac{100}{2^{99}}-\left(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{100}{2^{100}}\right)\)
=> \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
Dat \(B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
=> \(2B=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
=> \(2B-B=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}-\left(1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)\)
=> \(B=2-\frac{1}{2^{99}}\)
=> \(A=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}< 2\)
=> dpcm
CMR:
a)1/10^2 +1/11^2+1/12^2+...+1/100^2 >3/4
b)1/2^2+1/3^2+1/4^2+...+1/100^2<99/100
c)1/2^2+1/3^2+1/4^2+...+1/100^2<3/4
CMR 1/3-2/3^2+3/2^3-....+100/2^100<3/16
CMR1/2-2/2^2+3/2^3-4/2^4+.....+99/2^99-100/2^100<2/9
CMR: A= 1/2-2/2^2+3/2^3-4/2^4+....+99/2^99-100/2^100<2/9
CMR: 1/2-2/2^2+3/2^3-4/2^4+.....99/2^99-100/2^100<2/9
CMR A=1/2-2/2^2+3/2^3-4/2^4+...+99/2^99-100/2^100<2/9
CMR: A=1/2 - 2/2 mũ 2 + 3/2 mũ 3 - ........+ 99/2 mũ 99- 100/2 mũ 100 < 2/9
cmr :1/2^2+1/4^2+...+1/100^2<1
1/2!+1/3!+1/4!+...+1/100!<1
Dat \(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{100}{2^{100}}\)
=> \(2A=1+1+\frac{3}{2^2}+...+\frac{100}{2^{99}}\)
=> \(2A-A=1+1+\frac{3}{2^2}+...+\frac{100}{2^{99}}-\left(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{100}{2^{100}}\right)\)
=> \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
Dat \(B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
=> \(2B=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
=> \(2B-B=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}-\left(1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)\)
=> \(B=2-\frac{1}{2^{99}}\)
=> \(A=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}< 2\)
=> dpcm