Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/22 < 1/2.3 ; 1/32 < 1/3.4 ; .....; 1/502 < 1/50.51 => A < 1+1-1/2+1/2-1/3+...1/50-1/51 < 2
A=1/1^2+1/2^2+1/3^2+........+1/50^2
1/1^2=1/2x2=1-1/2
1/3^2=1/3x3=1-1/3
....................................
1/50^2=1/50x50=1-1/50
=>A < 1/1^2+1-1/2+1/2-1/3+1/3-1/4+.............+1/49-1/50
=>A < 1+(1-1/50)<1+1=2
=> A<2
A=1/1^2+1/2^2+1/3^2+........+1/50^2
1/1^2=1/2x2=1-1/2
1/3^2=1/3x3=1-1/3
....................................
1/50^2=1/50x50=1-1/50
=>A < 1/1^2+1-1/2+1/2-1/3+1/3-1/4+.............+1/49-1/50
=>A < 1+(1-1/50)<1+1=2
=> A<2
Ta có : \(\frac{1}{1^2}=1\)
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 2-\frac{1}{50}< 2\)
\(\Rightarrow A< 2\)
Vậy \(A< 2\)
a) Để chứng minh rằng A < 100, ta chia A thành 100 nhóm :
A = \(1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+...+\frac{1}{7}\right)+\left(\frac{1}{2^3}+...+\frac{1}{15}\right)+...+\left(\frac{1}{2^{99}}+...+\frac{1}{2^{100}}-1\right)\)
Thay các phân số trong mỗi dấu ngoặc bằng phân số lớn nhất trong dấu ngoặc đó, ta được :
A < \(1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+...+\frac{1}{2^{99}}.2^{99}=100\)
b) Để chứng minh rằng A > 50, ta thêm và bớt \(\frac{1}{2^{100}}\)rồi viết A dưới dạng sau :
A = \(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+\left(\frac{1}{5}+...+\frac{1}{2^3}\right)+\left(\frac{1}{9}+...+\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{99}+1}+...+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)
Thay các phân số trong mỗi dấu ngoặc bằng phân số nhỏ nhất trong dấu ngoặc đó, ta được :
A > \(1+\frac{1}{2}+\frac{1}{2^2}.2+\frac{1}{2^3}.2^2+...+\frac{1}{2^{100}}.2^{99}-\frac{1}{2^{100}}=1+\frac{1}{2}.100-\frac{1}{2^{100}}>50\)
\(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
CMR: S < 2
P/s: Ko tiếp loại Spam
Ta có: \(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1^2}+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
\(\Rightarrow S< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow S< 2-\frac{1}{50}\)
Vậy S < 2
1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 < 7/14
1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 <1/14 +1/14 +1/14 +1/14 +1/14 +1/14 +1/14
dù 1/3>1/14 nhưng :1/30<1/14 1/32<1/14 ;1/35<1/14 ;1/45<1/14 ;1/47<1/14 ;1/50<1/14
nên: 1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 < 1/2
1/2 + 1/2^2 + 1/3^2 + .....+ 1/50^2 < 1/1 + 1/1.2 + 1/2.3 +...+ 1/49.50
Đặt A = 1/1 + 1/1.2 + 1/2.3 +...+ 1/49.50
A= 1/1 - 1/1 + 1/1 -1/2 + 1/2 -1/3+...+ 1/49-1/50
A= 1/1 - 1/50
A= 49/50
Vì 49/50 < 1 mà 1/2 + 1/2^2 + 1/3^2 + .....+ 1/50^2 < 49/50 nên 1/2 + 1/2^2 + 1/3^2 + .....+ 1/50^2 <1
Vậy....