Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\hept{\begin{cases}\frac{1}{2\sqrt{n+1}}< \frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}\\\sqrt{n+1}-\sqrt{n}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}\end{cases}}\forall n\in N\)
Suy ra : \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\)
Đặt \(M=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2499}}+\frac{1}{\sqrt{2500}}\)
\(\Leftrightarrow\frac{1}{2}M=\frac{1}{2\sqrt{2500}}+\frac{1}{2\sqrt{2499}}+...+\frac{1}{2\sqrt{3}}+\frac{1}{2\sqrt{2}}+\frac{1}{2}\)
Áp dụng BĐT , ta có :
\(\frac{1}{2}M< \sqrt{2500}-\sqrt{2499}+\sqrt{2499}-\sqrt{2498}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}+\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}M< \sqrt{2500}-\sqrt{1}+\frac{1}{2}=50-\frac{1}{2}< 50\)
\(\Rightarrow M< 100\)
Ta có : \(\frac{1}{2\sqrt{n+1}}=\frac{1}{\sqrt{n+1}+\sqrt{n+1}}< \frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(n+1\right)-n}=\sqrt{n+1}-\sqrt{n}\)
\(\Rightarrow\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\)
Áp dụng : \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2500}}=2\left(\frac{1}{2\sqrt{1}}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{2500}}\right)< 2\left(1+\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2500}-\sqrt{2499}\right)=2\sqrt{2500}=2.50=100\)
Vậy ta có điều phải chứng minh.
Mình đã chứng minh \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\left(n\inℕ^∗\right)\) rồi nha!
Áp dụng vào, ta được: \(\frac{1}{2\sqrt{1}}< \sqrt{1}\)
\(\frac{1}{2\sqrt{2}}< \sqrt{2}-\sqrt{1}\)
\(\frac{1}{2\sqrt{3}}< \sqrt{3}-\sqrt{2}\)
.............................
\(\frac{1}{2\sqrt{2500}}< \sqrt{2500}-\sqrt{2499}\)
\(\Rightarrow1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2500}}\)
\(< 2\left(\sqrt{1}+\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2500}-\sqrt{2499}\right)\)
\(=2.50=100\)
=> ĐPCM
P/s: sai sót xin bỏ qua cho.
Đặt \(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2500}}\)
\(A=1+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{2500}}\)
\(A< 1+\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{2499}+\sqrt{2500}}\)
\(A< 1+2\left(\sqrt{2}-\sqrt{1}\right)+2\left(\sqrt{3}-\sqrt{2}\right)+...+2\left(\sqrt{2500}-\sqrt{2499}\right)\)
\(A< 1+2\left(\sqrt{2500}-1\right)=99< 100\)
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)\left(\sqrt{n+1}+\sqrt{n}\right)}}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng:
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
\(=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}=1-\frac{1}{\sqrt{n+1}}< 1\left(đpcm\right)\)
Lời giải:
Đặt \(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{2500}}\)
\(\frac{A}{2}=\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{2500}}\)
\(\frac{A}{2}< \frac{1}{2}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{2499}+\sqrt{2500}}\)
\(\frac{A}{2}< \frac{1}{2}+\frac{\sqrt{2}-1}{(\sqrt{1}+\sqrt{2})(\sqrt{2}-\sqrt{1})}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{2}+\sqrt{3})(\sqrt{3}-\sqrt{2})}+....+\frac{\sqrt{2500}-\sqrt{2499}}{(\sqrt{2499}+\sqrt{2500})(\sqrt{2500}-\sqrt{2499})}\)
\(\frac{A}{2}< \frac{1}{2}+(\sqrt{2}-\sqrt{1})+(\sqrt{3}-\sqrt{2})+...+(\sqrt{2500}-\sqrt{2499})\)
\(\frac{A}{2}< \frac{1}{2}+\sqrt{2500}-\sqrt{1}=49+\frac{1}{2}< 50\)
\(\Rightarrow A< 100\) (đpcm)
P.s: Bạn lưu ý lần sau gõ đề bài bằng công thức toán.