K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

Ta có: 45=5x9=> để CM 102008+125 (*) chia hết cho 45, ta sẽ CM (*) chia hết cho 5 và 9

Vì 102008 luôn có chữ số tận cùng là 0 => (*) chia hết cho 5

Và (125+1) chia hết cho 9 mà 102008 chia 9 dư 1=> (*) chia hết cho 9

Vậy (*) chia hết cho 45

6 tháng 12 2017

Ta có :

\(45=BCNN\left(5,9\right)\)\(ƯCLN\left(5,9\right)=1\)

Ta có :

\(10^{2008}+125=\left(100......0\right)+125=\left(1000.....125\right)\)

\(10^{2008}+125\) có chữ số tận cùng là 5 \(\Leftrightarrow10^{2008}+125⋮5\left(1\right)\)

\(10^{2008}+125\) có tổng các chữ số chia hết cho 9 \(\Leftrightarrow10^{2008}+125⋮9\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\left(10^{2008}+125\right)⋮5,9\)

\(\Leftrightarrow10^{2008}+125⋮45\left(đpcm\right)\)

22 tháng 2 2016

Ta có :

a chia hết cho 17

=> 17a+3a+b chia hết cho 17

=> 20a+2b chia hết cho 17

chia cho 2

=> 10a+b chia hết cho 17

Vậy 10a+b chia hết cho 17 (đpcm)

30 tháng 10 2015

ko ban nao tra loi cho mk a

6 tháng 2 2017

Ta có: a+5b chia hết cho 7

=>10(a+5b) chia hết cho 7

=>10a+50b chia hết cho 7

=>10a+b+49b chia hết cho 7

=>(10a+b+49b)-49b chia hết cho 7( vì số chia hết cho 7-một số chia hết cho 7 bằng 1 số chia hết cho 7)

=>10a+b chia hết cho 7

2 tháng 1 2019

Hàm số f(x) đâu có y,z (y là tên hàm số rồi còn gì)??

ĐK: \(x\inℤ\)

TA có: \(y=f\left(x\right)=ax^2+bx+c⋮5\)

Vậy \(f\left(x\right)=ax^2+bx+c\) có dạng \(5k\) (k nguyên)

Nếu \(x⋮5\Rightarrow x\)có dạng \(5t\)

Thay vào,ta có: \(f\left(x\right)=25at^2+5bt+c=5t\left(5at+b\right)+c=5k\)  (1)

Suy ra \(c=5k-5t\left(5at+b\right)=5\left[k-t\left(5at+b\right)\right]\)  (2)

Thay (2) và (1) suy ra nếu x chia hết cho 5 thì f(x) chia hết cho 5 (thỏa mãn)

Nếu \(x⋮̸5\Rightarrow x\) có dạng 5t + 1

Thay vào và chứng minh tương tự để suy ra nếu x không chia hết cho 5 thì f(x) không chia hết cho 5 (trái với giả thiết)

Từ đó suy ra đpcm