Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2 chia hết cho2 suy ra a chia hết cho 2
suy ra a2 chia hết cho 22
nên a2 chia hết cho 4
mod là viết tắt của module, là kiến thức liên quan đến đồng dư nha bạn
Vì 2n+1 là số chính phương lẻ nên 2n + 1 = 1 (mod8) => 2n chia hết cho 8 => n chia hết cho 4
Do đó n+1 cũng là số lẻ, suy ra n + 1 = 1 (mod8) => n chia hết cho 8
Lại có (n + 1) (2n + 1) = 3n + 2
Ta thấy 3n + 2 = 2 (mod3)
Suy ra (n + 1) (2n + 1) = 2 (mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên n + 1 = 2n + 1 = 1 (mod3)
Do đó n chia hết cho 3
đặt \(\left\{{}\begin{matrix}2n+1=a^2\\3n+1=b^2\end{matrix}\right.\)(\(a,b\in Z\))
\(\Rightarrow a^2+b^2=5n+2\equiv2\left(mod5\right)\)
số chính phương chia 5 chỉ có thể dư 0;1;4 nên \(a^2\equiv1\left(mod5\right);b^2\equiv1\left(mod5\right)\)\(\Rightarrow2n+1\equiv1\left(mod5\right)\Rightarrow n⋮5\)(1)
giờ cần chứng minh \(n⋮8\)
từ cách đặt ta cũng suy ra \(n=b^2-a^2\)
vì số chính phương lẻ chia 8 dư 1 mà 2n+1 lẻ \(\Rightarrow a^2\equiv1\left(mod8\right)\)hay \(2n\equiv0\left(mod8\right)\)\(\Rightarrow n⋮4\) nên n chẵn \(\Rightarrow b^2=3n+1\)cũng là số chính phương lẻ \(\Rightarrow b^2\equiv1\left(mod8\right)\)
do đó \(b^2-a^2\equiv0\left(mod8\right)\)hay \(n⋮8\)(2)
từ (1) và (2) \(\Rightarrow n⋮40\)(vì gcd(5;8)=1)
Vì số chính phương khi chia hết cho 1 số nguyên tố thì phải chia hết cho bình phương của số đó.
Trường hợp cuối chưa hắc phải chia hết cho 16 mới là số chính phương vì :
Chia hết cho 8 -> Chia hết cho 2 và 4 ( TH đầu tiên )
vì 4 chia hết cho 2
vì 9 chia hết cho 3
vì 25 chia hết cho 5
vì 16 chia hết cho 8