K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2020

Dạ thưa anh, em nghĩ:..

Bg

Gọi số chính phương đó là p  (p \(\inℤ\))

Theo đề bài: p2 \(⋮\)a

=> pp \(⋮\)a

=> p \(⋮\)a

=> p2 \(⋮\)a2 

=> ĐPCM

12 tháng 9 2020

Mình xin sửa đề lại nha vì đề chỉ đúng khi a là số nguyên tố.

Định lí cơ bản của số học: Mỗi số đều có thể phân tích được thành tích các lũy thữa của các số nguyên tố khác nhau và cách phân tích ấy là duy nhất cho mỗi số.

Vậy ta xét Số tự nhiên n và khai triển của nó: \(n=a_1^{x_1} .a_2^{x_2} .a_3^{x_3} ....a_n^{x_n}\)  Với a1,...,an là các số nguyên tố khác nhau.

Bình phương biểu thức vừa có để thu được số chính phương: \(n^2=\left(a_1^{x_1}\right)^2.\left(a_2^{x_2}\right)^2....\left(a_n^{x_n}\right)^2\)

Vậy nếu ta chọn 1 trong các số nguyên tố a bất kì trong a1,...,an Khi đó n chia hết cho a và n2 cũng chia hết cho a2.

Số chính phương là một số bằng bình phương của một số tự nhiênFTính chất  a) Số chính phương chỉ có thể tận cùng là : 0; 1; 4; 5; 6; 9 không thể tận cùng bởi   2; 3; 7; 8.b)     Một số chính phương có chữ số tận cùng là 5 thì chữ số hàng chục là 2,c)      Một số chính  phương có chữ số hàng đơn vị là 6 thì chữ số hàng chục của nólà số lẻ.d)   Khi phân tích ra thừa số nguyên tố, số...
Đọc tiếp

Số chính phương là một số bằng bình phương của một số tự nhiên

FTính chất

  a) Số chính phương chỉ có thể tận cùng là : 0; 1; 4; 5; 6; 9 không thể tận cùng bởi   

2; 3; 7; 8.

b)     Một số chính phương có chữ số tận cùng là 5 thì chữ số hàng chục là 2,

c)      Một số chính  phương có chữ số hàng đơn vị là 6 thì chữ số hàng chục của nó

là số lẻ.

d)   Khi phân tích ra thừa số nguyên tố, số chính phương chỉ chứa các thừa số

nguyên tố với số mũ chẵn ,không chứa thừa số nguyên tố với số mũ lẻ .

 

FTừ tính chất này suy ra

 

-Số chính phương chia hết cho 2 thì chia hết cho 4.

-Số chính phương chia hết cho 3 thì chia hết cho 9.

-Số chính phương chia hết cho 5 thì chia hết cho 25. 

-Số chính phương chia hết cho 8 thì chia hết cho 16.

0
7 tháng 10 2017

a, Vì n \(\in\)N => n là số chính phương

mà 9 = 32 là số chính phương

=> n2 + 9 là số chính phương.

Vậy A = n2 + 9 là số chính phương.

CHÚC BẠN HỌC TỐT!!!!

22 tháng 1 2023

chứng minh kiểu j vậy?

sai bét

 

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 62/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 83/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 94/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 95/CM n^5-5n^3+4n chia hết cho 120 vơi...
Đọc tiếp

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6

2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8

3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9

4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9

5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n

6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n

7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n

8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49

9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương

10/CMR với mọi số tự nhiên n>1:

a/ số n^4 +4 là hợp số

b/ số n^4+4k^4 là hợp số (k là số tự nhiên)

11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5

12/ Số 2^32+1 có là số nguyên tố không?

13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)

14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n

15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia

                               

6
14 tháng 7 2016

nhìn là hết muốn làm

14 tháng 7 2016

sao dài dòng quá vậy, như thế thì ai mà làm nổi, bạn phải hỏi từng bài 1 chứ

Nhìn là muốn chạy rùi

^-^

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 62/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 83/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 94/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 95/CM n^5-5n^3+4n chia hết cho 120 vơi...
Đọc tiếp

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6

2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8

3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9

4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9

5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n

6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n

7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n

8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49

9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương

10/CMR với mọi số tự nhiên n>1:

a/ số n^4 +4 là hợp số

b/ số n^4+4k^4 là hợp số (k là số tự nhiên)

11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5

12/ Số 2^32+1 có là số nguyên tố không?

13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)

14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n

15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia

                               

7
11 tháng 8 2015

đăng giết người à           

11 tháng 8 2015

Nhìn là hết muốn làm.

18 tháng 7 2015

Bài 1:

Do một số chia cho 3 có số dư là 0, 1, 2 nên đặt các số là 3x, 3x+1 và 3x+2.

Ta có: (3x)2 = 9x2 chia hết cho 3

           (3x + 1)2 = 9x2 + 6x +1 chia 3 dư 1

           (3x + 2)2 = 9x2 + 12x + 4 chia 3 dư 1

Vậy một số chính phương chia cho 3 hoặc chia hết hoặc dư 1.

Bài 2 : Tương tự

 

8 tháng 12 2016

Bài 1:

Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2. 
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên) 
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0 
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1 
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1. 
Vậy số chính phương chia cho 3 dư 0 hoặc 1 
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.