K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

quy luật cho sẵn rồi bạn ơi

24 tháng 2 2017

1 số tự nhiên sẽ có dạng 2k hoặc 2k+1

xét trường hợp 2k ta có 2k\(^2\)=4k\(^2\) chia hết cho 4

                       2k+1 ta có (2k+1)\(^2\) =4k\(^2\)+4k+1 chia 4 dư 1

1 tháng 7 2015

Trong phép chia cho 4 : số dư là một số tự nhiên bé hơn 4.

Vậy số dư trong phép chia cho 4 là 0;1;2;3

25 tháng 10 2015

Gọi số chính phương đã cho là a^2 (a là số tự nhiên) 
Cần chứng minh a^2 chia 3 dư 0 hoặc dư 1 
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2. 
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên) 
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0 
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1 
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1. 
Vậy số chính phương chia cho 3 dư 0 hoặc 1 

15 tháng 10 2018

Gọi A là số chính phương A = n2 (n ∈ N)

a)Xét các trường hợp:

n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3

n= 3k 1  (k ∈ N) A = 9k2  6k +1 chia cho 3 dư 1

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .

b)Xét các trường hợp

n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.

n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1

= 4k(k+1)+1,

chia cho 4 dư 1(chia cho 8 cũng dư 1)

vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .

     Chú ý: Từ bài toán trên ta thấy:

-Số chính phương chẵn chia hết cho 4

-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).

bạn à câu C hình như bạn viết thiếu đề

14 tháng 4 2018

ta có: p là số nguyên tố> 5 nên p:6 dư 1;2;3;4;5. p=6k+1;6k+2;6k+3;6k+4;6k+5.

với p= 6k+1 có dư là 1.

với p= 6k+2= 2[3k+1] {loại}

với p= 6k+3= 3[2k+1] {loại}

với p= 6k+4= 2[3k+2] {loại}

với p= 6k+5 có dư là 5.

       VẬY nếu p là nguyên tố> 5 thì p: 6 chỉ có dư là 1 hoặc 5