Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n3−28n=n3−4n−24nn3−28n=n3−4n−24n
Ta xét n3−4n=n(n2−22)=n(n−2)(n+2)n3−4n=n(n2−22)=n(n−2)(n+2)
Nên tồn tại ít nhất 1 số chia hết cho 2, cho 4 và cho 6 nên biểu thức trên chia hết cho : 2 . 4 . 6 =48;
Do n là số chẵn nên n có dạng là 2k , xét 24n ta có:
24n=24.2k=48k⋮4824n=24.2k=48k⋮48
Hai số chia hết cho 48 nên hiệu của chúng chia hết cho 48;
VẬY...
CHÚC BẠN HỌC TỐT.....
n^4+2n^3-n^2-2n
= n^3.(n+2) - n.(n+2)
= (n^3-n).(n+2)
=n(n^2-1).(n+2)
=n.(n-1).(n+1).(n+2)
Mà tích 4 số tự nhiên chia hết cho 24
=> n^4+2n^3-n^2-2n chia hết cho 24 (đpcm)
3663−1 ⋮ 36−1=35 ⋮ 7
3663−1=(3663+1)−2 :37 dư −2 => 3663không chia hết cho 37
=> đpcm
a) Có: \(2^3=8\equiv1\left(mod7\right)\Rightarrow2^{51}\equiv1\left(mod7\right)\)
\(\Rightarrow2^{51}-1⋮7\left(đpcm\right)\)
b) 270 + 370 = (22)35 + (32)35 = 435 + 935
\(=\left(4+9\right).\left(4^{34}-4^{33}.9+....-4.9^{33}+9^{34}\right)\)
\(=13.\left(4^{34}-4^{33}.9+...-4.9^{33}+9^{34}\right)⋮13\left(đpcm\right)\)
em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122
phần a sai đề nha bạn
b,Ta có
\(2\equiv2\left(mod13\right)\)
\(\Rightarrow2^{12}\equiv1\left(mod13\right)\)
\(\Rightarrow2^{12.5}.2^{10}\equiv1.2^{10}\left(mod13\right)\)
\(\Rightarrow2^{60}.2^{10}\equiv1024\left(mod13\right)\)
\(\Rightarrow2^{70}\equiv10\left(mod13\right)\)\(\left(1\right)\)
Lại có:
\(3\equiv3\left(mod13\right)\)
\(\Rightarrow3^6\equiv1\left(mod13\right)\)
\(\Rightarrow3^{6.11}.3^4\equiv1.3^4\left(mod13\right)\)
\(\Rightarrow3^{66}.3^4\equiv81\left(mod13\right)\)
\(\Rightarrow3^{70}\equiv3\left(mod13\right)\)\(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow2^{70}+3^{70}\equiv13\equiv0\left(mod13\right)\)
c, Ta có
\(17\equiv-1\left(mod18\right)\)
\(\Rightarrow17^{19}\equiv-1\left(mod18\right)\)\(\left(1\right)\)
Lại có
\(19\equiv1\left(mod18\right)\)
\(\Rightarrow19^{17}\equiv1\left(mod18\right)\)\(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow17^{19}+19^{17}\equiv0\left(mod18\right)\)
\(\Rightarrow17^{19}+19^{17}⋮18\)