K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

Đặt \(\frac{a}{b}=\frac{b}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\b=dk\end{cases}}\Leftrightarrow a=bk^2\)

\(\Rightarrow\frac{a^2+b^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=k^2\)(1)

và \(\frac{a}{d}=\frac{dk^2}{d}=k^2\)(2)

Từ (1) và (2) suy ra \(\Rightarrow\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\)

a=bk^2 là sai rồi

12 tháng 11 2016

bài 2:

theo bài ra ta có:

a2= bc

=> \(\frac{a}{c}=\frac{b}{a}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-d}\)

=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

=> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

theo chứng minh trên \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) ,như vậy điều ngược lại đúng

12 tháng 11 2016

bài 1:

theo bài ra ta có:

\(\frac{a}{b}=\frac{c}{d}\)

=>\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+c}{b+d}=\frac{a+2c}{b+2d}\)

=> \(\frac{a+c}{b+d}=\frac{a+2c}{b+2d}\)

=> (a+c).(b+2d) = (b+d).(a+2c) (đpcm)

 

2 tháng 1 2022

a. Áp dụng tính chất dãy tỉ số = nhau ta có:
x/4 = y/3 = z/9 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2
=> x/4 = 2 -> x = 8
     y/3 = 2 -> y = 6
     z/9 = 2 -> z = 18