Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath
(Chỉ là chia đa thức thôi mà!)
Anh giải câu b thôi, mấy câu còn lại tự làm nha.
\(2n^3+n^2+7n+1=\left(2n-1\right)\left(n^2+n+4\right)+5\)
Suy ra \(\frac{2n^3+n^2+7n+1}{2n-1}=n^2+n+4+\frac{5}{2n-1}\)
Để vế trái nguyên thì \(2n-1\) là ước của \(5\). Giải được \(n=-2,0,1,3\)
\(2b.\)
Với mọi \(m;n\in Z\), ta có:
\(mn\left(m^4-n^4\right)=mn\left[\left(m^4-1\right)-\left(n^4-1\right)\right]=mn\left(m^4-1\right)-mn\left(n^4-1\right)\)
\(\text{*)}\) Xét \(mn\left(m^4-1\right)=mn\left(m^2-1\right)\left(m^2+1\right)\)
\(=mn\left(m^2-1\right)\left[\left(m^2-4\right)+5\right]\)
\(=mn\left(m^2-1\right)\left(m^2-4\right)+5mn\left(m^2-1\right)\)
\(mn\left(m^4-1\right)=mn\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)+5mn\left(m-1\right)\left(m+1\right)\)
Vì \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\) là tích của \(5\) số nguyên liên tiếp nên \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\) chia hết cho \(2;3\) và \(5\)
Mà \(\left(2;3;5\right)=1\)
Do đó, \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\) chia hết cho \(2.3.5=30\) \(\left(1\right)\)
Mặt khác, \(m\left(m-1\right)\left(m+1\right)\) chia hết cho \(6\) (tích của \(3\) số nguyên liên tiếp)
nên \(5mn\left(m-1\right)\left(m+1\right)\) chia hết cho \(30\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) , suy ra \(mn\left(m^4-1\right)\) chia hết cho \(30\) \(\left(\text{*}\right)\)
Tương tự, ta cũng chứng minh \(mn\left(n^4-1\right)\) chia hết cho cho \(30\) \(\left(\text{**}\right)\)
Từ \(\left(\text{*}\right)\) và \(\left(\text{**}\right)\) suy ra \(mn\left(m^4-n^4\right)\) chia hết cho \(30\) với mọi \(m;n\in Z\)
Đề câu \(a.\) sai rồi nha bạn!
Ví dụ, với \(n=2\) thì \(3^{2.2+1}+2^{2.2+2}=3^5+2^6=307\) không chia hết cho \(7\) (vô lí)
Hiển nhiên, với công thức tổng quát \(3^{2n+1}+2^{2n+2}\) sẽ không chia hết cho \(7\) với \(n=2\)
\(-------------\)
\(a.\) \(3^{2n+1}+2^{n+2}=3^{2n}.3+2^n.2^2\)
\(=9^n.3+2^n.4\)
\(=9^n.3-2^n.3+2^n.3+2^n.4\)
\(=3\left(9^n-2^n\right)+2^n\left(3+4\right)\)
\(=3\left(9^n-2^n\right)+2^n\left(3+4\right)\)
\(=3\left(9-2\right)\left(9^{n-1}+9^{n-2}.2+9^{n-3}.2^2+...+2^{n-1}\right)+7.2^n\)
\(3^{2n+1}+2^{n+2}=3.7M+7.2^n\)
Vì \(3.7M\) chia hết cho \(7\) và \(7.2^n\) chia hết cho \(7\) nên \(3.7M+7.2^n\) chia hết cho \(7\)
Vậy, \(3^{2n+1}+2^{n+2}\) chia hết cho \(7\)
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
a) Thay m = -1 và n = 2 ta có:
3m - 2n = 3(-1) -2.2 = -3 - 4 = -7
b) Thay m = -1 và n = 2 ta được
7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.
a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8
a) Ta có:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(-5n⋮5\) với n thuộc Z
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z
b) Ta có:
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n\)
\(=5\left(n^2+n\right)\)
Vì \(5\left(n^2+n\right)⋮5\)
\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)
c) Ta có:
\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)
\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)
Vì \(2\left(xy+1\right)y^{2003}⋮2\)
\(2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)
ta có:
n4 + 2n3 - n2 - 2n
= n4 - n3 + 3n3 - 3n2 + 2n2 - 2n
= (n4 - n3) + (3n3 - 3n2) + (2n2 - 2n)
= n3(n - 1) + 3n2(n - 1) + 2n(n - 1)
= (n3 + 3n2 + 2n)(n - 1)
= (n3 + n2 + 2n2 + 2n)(n - 1)
= [n2(n + 1) + 2n(n + 1)](n - 1)
= (n2 + 2n)(n + 1)(n - 1)
= (n - 1)n(n + 1)(n + 2)
Vì bốn số nguyên liên tiếp sẽ chia hết cho 24
=> (n - 1)n(n + 1)(n + 2) chia hết cho 24
Hay n4 + 2n3 - n2 - 2n chia hết cho 24
dài quá man's :v
\(A=n^4+2n^3-n^2-2n=n\left(n^3+2n^2-n-2\right)=n\left[\left(n^3-n\right)+\left(2n^2-2\right)\right]\)
\(=n\left[n\left(n^2-1\right)+2\left(n^2-1\right)\right]=n\left(n^2-1\right)\left(n+2\right)=n\left(n-1\right)\left(n+1\right)\left(n+2\right)\)
vì tích 4 số nguyên liên tiếp chia hết cho 24
<=> A \(⋮24\) --> đpcm
n^4+2n^3-n^2-2n
= n^3.(n+2) - n.(n+2)
= (n^3-n).(n+2)
=n(n^2-1).(n+2)
=n.(n-1).(n+1).(n+2)
Mà tích 4 số tự nhiên chia hết cho 24
=> n^4+2n^3-n^2-2n chia hết cho 24 (đpcm)