\(Cm:\frac{a}{bcd+1}+\frac{b}{acd+1}+\frac{c}{abd+1}+\frac{d}{abc+1}\le3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2020

chắc áp dụng định lý Lagrange và bất đẳng thức AM-GM

16 tháng 8 2019

Làm tạm một câu rồi đi chơi, lát làm cho.

4)

Áp dụng bất đẳng thức Cauchy-Schwarz :

\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

16 tháng 8 2019

2/ Cô: \(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a.a.b}{b.b.c}}=3\sqrt[3]{\frac{a^3}{abc}}=\frac{3a}{\sqrt[3]{abc}}\)

Tương tự hai BĐT còn lại và cộng theo vế thu được:

\(3.VT\ge3.VP\Rightarrow VT\ge VP^{\left(Đpcm\right)}\)

Đẳng thức xảy ra khi a = b= c

29 tháng 1 2020

\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\) ( đúng )

Dấu "=" \(\Leftrightarrow a=b\)

a) Áp dụng BĐT trên ta có:

\(\Sigma\left(\frac{1}{a^3+b^3+abc}\right)\le\Sigma\left(\frac{1}{ab\left(a+b\right)+abc}\right)=\Sigma\left[\frac{1}{ab}\cdot\left(\frac{1}{a+b+c}\right)\right]=\frac{1}{a+b+c}\cdot\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{a+b+c}{\left(a+b+c\right)\cdot abc}=\frac{1}{abc}\)

Dấu "=" khi \(a=b=c\)

b) \(\Sigma\left(\frac{1}{a^3+b^3+1}\right)\le\Sigma\left(\frac{1}{ab\left(a+b\right)+abc}\right)=\Sigma\left[\frac{1}{ab}\cdot\left(\frac{1}{a+b+c}\right)\right]=\frac{1}{abc}=1\)

Dấu "=" khi \(a=b=c=1\)

c) \(\Sigma\left(\frac{1}{a+b+1}\right)\le\Sigma\left(\frac{1}{\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)+\sqrt[3]{abc}}\right)=\Sigma\left[\frac{1}{\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)}\right]\)

\(=\frac{1}{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}\cdot\left(\frac{1}{\sqrt[3]{ab}}+\frac{1}{\sqrt[3]{bc}}+\frac{1}{\sqrt[3]{ca}}\right)=\frac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\cdot\sqrt[3]{abc}}=\frac{1}{\sqrt[3]{abc}}=1\)

Dấu "=" khi \(a=b=c=1\)

15 tháng 8 2020

sửa: chứng minh \(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\ge\frac{3}{2}\)

áp dụng bđt Cauchy ta có

\(\frac{1}{1+ab}=1-\frac{1}{1+ab}\ge1-\frac{ab}{2\sqrt{ab}}=1-\frac{\sqrt{ab}}{2}\)

tương tự ta có \(\hept{\begin{cases}\frac{1}{1+bc}\ge1-\frac{\sqrt{bc}}{2}\\\frac{1}{1+ca}\ge1-\frac{\sqrt{ca}}{2}\end{cases}}\)

cộng theo vế các bđt trên và áp dụng bđt Cauchy ta được

\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge3-\frac{1}{2}\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(\ge3-\frac{1}{2}\left(\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\right)=3-\frac{a+b+c}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)

dấu "=" xảy ra khi \(\hept{\begin{cases}1+ab=1+bc=1+ca\\a=b=c\\a+b+c=3\end{cases}\Leftrightarrow a=b=c=1}\)

13 tháng 2 2020

a) Áp dụng BĐT Cauchy-Schwarz dạng Engel: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Tương tự:\(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c};\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)

Cộng theo vế 3 BĐT trên rồi chia cho 2 ta thu được đpcm

Đẳng thức xảy ra khi \(a=b=c\)

b)Đặt \(a+b=x;b+c=y;c+a=z\). Cần chứng minh:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

Cách làm tương tự câu a.

c) \(VT=\Sigma_{cyc}\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\Sigma_{cyc}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\le\frac{1}{16}\Sigma\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

Đẳng thức xảy ra khi \(a=b=c=\frac{3}{4}\)

d) Em làm biếng quá anh làm nốt đi:P

13 tháng 2 2020

lm phần d đi a k bt lm

NV
9 tháng 2 2020

Từ \(\frac{a}{b}< 1\Rightarrow a< b\)

\(\frac{a}{b}< \frac{a+c}{b+c}\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow ab+ac< ab+bc\Leftrightarrow ac< bc\Leftrightarrow a< b\) (đúng với giả thiết)

a/ Ta có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\) ; \(\frac{b}{b+c}< \frac{a+b}{a+b+c}\); \(\frac{c}{c+a}< \frac{b+c}{a+b+c}\)

Cộng vế với vế:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c+a+b+b+c}{a+b+c}=2\)

NV
9 tháng 2 2020

b/ \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\) ; \(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\) ; \(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

Cộng vế với vế:

\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}=1\)

Mặt khác:

\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\) ; \(\frac{b}{b+c+d}< \frac{b+a}{b+c+d+a}\) ...

Bạn tự làm nốt

c/ Hoàn toàn tương tự:

\(\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\) làm tương tự 3 cái còn lại

Cộng lại sẽ ra BĐT bên trái

Sau đó \(\frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\) làm tương tự với 3 cái còn lại rồi cộng lại ra BĐT bên phải

NV
11 tháng 2 2020

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

a/ \(VT=\frac{1}{a+a+b+c}+\frac{1}{a+b+b+c}+\frac{1}{a+b+c+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\frac{3}{4}\)

b/ \(VT\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{bc}{4}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{ca}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(VT\le\frac{a}{4}+\frac{b}{4}+\frac{b}{4}+\frac{c}{4}+\frac{c}{4}+\frac{a}{4}=\frac{a+b+c}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

NV
9 tháng 2 2020

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

a/ Từ BĐT ban đầu ta có:

\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) (đpcm)

NV
9 tháng 2 2020

b/ Chia 2 vế của BĐT ở câu a cho 9 ta được:

\(\frac{a^2+b^2+c^2}{3}\ge\frac{\left(a+b+c\right)^2}{9}=\left(\frac{a+b+c}{3}\right)^2\) (đpcm)

c/ Cộng 2 vế của BĐT ban đầu với \(2ab+2bc+2ca\) ta được:

\(a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

d/ Áp dụng BĐT ban đầu cho các số \(a^2;b^2;c^2\) ta được:

\(\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\ge a^2b^2+b^2c^2+c^2a^2\)

Mặt khác ta cũng có:

\(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\ge ab.bc+bc.ca+ab+ca=abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

31 tháng 10 2019

Em nghĩ cần thêm đk a, b, c là các số thực dương

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\) thì x + y + z = 3; x > 0,y>0,z>0

BĐT \(\Leftrightarrow\sqrt{\frac{5}{x}+4}+\sqrt{\frac{5}{y}+4}+\sqrt{\frac{5}{z}+4}\le3\sqrt{3\left(\frac{xy+yz+zx}{xyz}\right)}\)

\(\Leftrightarrow\sqrt{5yz+4xyz}+\sqrt{5zx+4xyz}+\sqrt{5z+4xyz}\le3\sqrt{3\left(xy+yz+zx\right)}\)(*)

\(VT\le\sqrt{5\left(xy+yz+zx\right)+12xyz+2\Sigma_{cyc}\sqrt{\left(5yz+4xyz\right)\left(5zx+4xyz\right)}}\)

\(\le\sqrt{15\left(xy+yz+zx\right)+36xyz}\)(áp dụng BĐT AM-GM)

Chú ý rằng: \(xyz\le\frac{\left(xy+yz+zx\right)\left(x+y+z\right)}{9}\)

Từ đó \(VT\le\sqrt{15\left(xy+yz+zx\right)+4\left(xy+yz+zx\right)\left(x+y+z\right)}\)

\(=3\sqrt{3\left(xy+yz+zx\right)}=VP_{\text{(*)}}\)

Ta có đpcm.

Đẳng thức xảy ra khi a = b = c = 1

Is that true?

31 tháng 10 2019

ấy nhầm, cái dòng thứ 5 là VT =.... nha!