Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a:
Ta có: 1/51 > 1/100 ; 1/52>1/100 ..... ; 1/99>1/100
=> 1/51+1/52+...+1/100 > 1/100+1/100+.....+1/100 ( 50 số ) = 50/100=1/2 (1)
Ta lại có: 1/52<1/51; 1/53<1/51;....; 1/100<1/51
=> 1/51+1/52+....+1/100<1/51+1/51+.......+1/51 ( 50 số = 50/51<1 (2)
Từ (1) (2) => đpcm
Câu b làm tương tự :)
a,1/51 > 1/100
1/52 > 1/100
1/53 > 1/100
...
1/100=1/100
=>H>1/100 + 1/100 + 1/100 +...+1/100
H>50/100=1/2
1/51<1/50
1/52<1/50
....
1/100<1/50
=>H<1/50+1/50+...+1/50
H<50/50=1
Vay1/2<H<1
b, đặt cái 1/21 + 1/22 +1/23+....+1/40 là A nhé và A có 20 hạng tử
Ta có 1/21 + 1/22 +1/ 23+......+1/30>1/30 +1/30 +....+1/30 =10/30 =1/3(*)
lại có 1/31 + 1/32+.....+1/40>1/40 + 1/40 + 1/40.....=10/40=1/4(**)
từ (*) và (**) => A> 1/3 +1/4
A>7/12
từng đó thì phải. Còn < 1/10 thì sai đề vì 7/12 > 1/10 mà. Mình chỉ cm đc < 5/6 thôi
a, ta có 1/51 + 1/52 + 1/53 + 1/54.....+1/100 > 1/100 + 1/100 + 1/100+......+1/100
=> 1/51 +1/52 +......+1/100 > 50/100 =1/2 ( vì có 50 hạng tử)
tương tự 1/51 + 1/52 +1/53 ..........+1/100 < 1/51 + 1/51 + 1/51 +1/51......
=> 1/51 + 1/52 + 1/53....+1/100 < 50/51 <1
nên ta suy ra điều phải cm
a) \(\frac{1}{2}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< 1\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)+...+\left(\frac{1}{91}+\frac{1}{92}+...+\frac{1}{100}\right)\)\(\frac{1}{60}\cdot10< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}\cdot10\)
\(\frac{1}{6}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{5}\)(1)
\(\frac{1}{70}\cdot10< \frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}< \frac{1}{60}\cdot10\)
\(\frac{1}{7}< \frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}< \frac{1}{6}\)(2)
.... (tương tự )
\(\frac{1}{100}\cdot10< \frac{1}{91}+\frac{1}{92}+...+\frac{1}{100}< \frac{1}{90}\cdot10\)
\(\frac{1}{10}< \frac{1}{91}+...+\frac{1}{100}< \frac{1}{9}\)
Từ (1)(2)(3)(4) và (5)
\(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\)
\(\frac{1}{2}< \frac{1624}{2520}< \frac{1}{51}+...+\frac{1}{100}\)
\(1>\frac{1879}{2520}>\frac{1}{51}+...+\frac{1}{100}\)
Ta có: 151+152+...+175>175+175+...+175=2575=13
176+177+...+1100>1100+1100+...+1100=25100=14
=> S>13+14=712 (1)
Ta có: 151+152+...+175<150+150+...+150=2550=12
176+177+...+1100<175+175+...+175=2575=13
=> S<12+13=56(2)
Từ (1) và (2) => 712 < S<56
Ta có:
- 1/51 > 1/75, 1/52 > 1/75 ...
=> 1/51 + 1/52 + ... + 1/75 > 1/75 + ... 1/75 = 25/75 = 1/3
- 1/76 > 1/100, 1/77 > 1/100 ...
=> 1/76 + 1/77 + ... + 1/100 > 1/100 + ... + 1/100 = 25/100 = 1/4
Từ đó : S = ( 1/51 + ... + 1/75 ) + ( 1/76 + ... + 1/100 ) > 1/3 + 1/3 = 7/12 (1)
- 1/51 < 1/50, 1/52 < 1/50 ...
=> 1/51 + 1/52 + ... + 1/75 < 1/50 + ... 1/50 = 25/50 = 1/2
- 1/76 < 1/75, 1/77 < 1/75...
=> 1/76 + 1/77 + ... + 1/100 < 1/75 + ... + 1/75 = 25/75 = 1/3
Từ đó : S = ( 1/51 + ... + 1/75 ) + ( 1/76 + ... + 1/100 ) < 1/2 + 1/3 = 5/6 (2)
từ (1) và (2) => 5/6 > S > 7/12
* Chúc bn học tốt !!!
Đặt \(A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)
Ta có: \(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}>\dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)
\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}>\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{25}{100}=\dfrac{1}{4}\)
Do đó: \(A>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)(1)
Ta có: \(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{25}{50}=\dfrac{1}{2}\)
\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}< \dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)
Do đó: \(A< \dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)(2)
Từ (1) và (2) ta suy ra ĐPCM
a,
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}