K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(\frac{2n+3}{4n+1}\) là phân số tối giản

\(\frac{2n+3}{4n+1}\)\(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1

=>n=1

mình ko chắc là đúng nha

7 tháng 4 2021

Vì n là số nguyên nên 2n + 7 và 5n + 2 là số nguyên.

Gọi \(d\inƯC\left(2n+7,5n+2\right)\)

\(\Rightarrow2n+7⋮d\)và \(5n+2⋮d\)

\(\Rightarrow5\left(2n+7\right)-2\left(5n+2\right)⋮d\Rightarrow10n+35-10n-4⋮d\)

\(\Rightarrow31⋮d\Rightarrow d\in\left\{1;-1;31;-31\right\}\)

Ta có \(2n+7⋮31\Leftrightarrow2n+7+31⋮31\Leftrightarrow2n+38⋮31\Leftrightarrow2\left(n+19\right)⋮31\)

Vì \(\left(2,31\right)=1\Rightarrow n+19⋮31\Leftrightarrow n+19=31k\Leftrightarrow n=31k-19\)

+) Nếu \(n=31k-19\)

\(\Rightarrow2n+7=2\left(31k-19\right)+7=62k-38+7=62k-31\)

\(=31\left(2k-1\right)⋮31\)mà \(2n+7>2\Rightarrow2n+7\)là hợp số ( loại )

+) Nếu \(n\ne31k-19\)thì \(2n+7\)ko chia hết cho 31.

\(\RightarrowƯC\left(2n+7,5n+2\right)=\left\{1;-1\right\}\)

\(\Rightarrow\frac{2n+7}{5n+2}\)là PSTG .

                       Vậy n\\(n\ne31k-19\)thì \(\frac{2n+7}{5n+2}\)là PSTG \(\forall\)số nguyên n.

13 tháng 3 2022

 có thể làm cách khác nhé

 

2 tháng 2 2017

Là số 0.

Nếu bạn nào thấy đúng, nhớ k cho mình nha !

2 tháng 2 2017

bạn giải ra được không , tớ cần lời giải chứ đáp án thì tớ biết

ta có

\(\frac{2n+7}{5n+2}=\frac{2n+2+5}{2n+2+3n}=2+\frac{5}{5n+2}\)

để \(\frac{5}{5n+2}\)là số nguyên thì 5\(⋮\)(5n+2) và n thuộc N

=> 5n+2 \(\in\)Ư(5)={-1;-5;1;5}

* 5n+2=(-1)       => n=(-0,6)       loại

* 5n+2=(-5)       => n=(-0,4)       loại

* 5n+2=1          => n=(-0,2)       loại

* 5n+2=5          => n=0,6          loại

vậy không có giá trị n nào thỏa mãn

a: Gọi d=ƯCLN(2n+7;n+3)

=>2n+7-2n-6 chia hết cho d

=>1 chia hết cho d

=>d=1

=>phân số tối giản

b: Gọi d=ƯCLN(5n+7;2n+3)

=>10n+14-10n-15 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

28 tháng 1 2016

7/5

28 tháng 1 2016

7/5,ai kết bạn tui cho ti.ck

b: Gọi d=ƯCLN(2n+3;4n+8)

=>4n+8-2(2n+3) chia hết cho d

=>2 chia hết cho d

mà 2n+3 là số lẻ

nên d=1

=>PSTG

c: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

2 tháng 4 2023

luiiliuoiuoi

6 tháng 4 2016

Giả sử 5n+2 và 2n+7 cùng chia hết cho một số nguyên tố d(d€ N*)

=>5n+2˙:d;2n+7˙:d

=>2(5n+2)˙:d;5(2n+7)˙:d

=>5(2n+7)-2(5n+2)˙:d

=>10n+35-10n-4˙:d

=>31˙:d=>d=31

=>5n+2˙:31 và 2n+7˙:31

2n+7˙:31=>2n+7-31˙:31

               =>2n-24˙:31=>2(n-12)˙:31

=>n-12˙:31(vì 2 và 31 nguyên tố cùng nhau)

=>n-12=31q(q€Z)

=>n=31q+12

=>A là ps tối giản thì n khác31q+12

n là số nguyên dương <2016

=>0<31q+12<2016

=>-12<31q<2004

=>-12/31<q<2004/31

=>0<=q<64,6

=>q nhận 65 gtrị để A là ps tối giản