Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)
\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)
Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị
trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))
\(\Leftrightarrow\frac{4}{x\left(y+z\right)}\ge1\)
mà \(x\left(y+z\right)\le\frac{\left(x+y+z\right)^2}{4}\)
\(\Rightarrow\frac{4}{x\left(y+z\right)}\ge\frac{4}{\frac{\left(x+y+z\right)^2}{4}}=\frac{16}{\left(x+y+z\right)^2}=\frac{16}{16}=1\left(đpcm\right)\)
\(\frac{18\sqrt{2}}{3}=6\sqrt{2}\)
đặt mẫu số = Pain
áp dụng BDT cô si shaw ta có
\(\frac{1}{\sqrt{x\left(y+z\right)}}+\frac{1}{\sqrt{y\left(z+x\right)}}+\frac{1}{\sqrt{z\left(x+y\right)}}\ge\frac{9}{Pain}\)
áp dụng BDT cô si ta có ( thêm 2)
\(\sqrt{2x\left(y+z\right)}\le\frac{\left(2x+y+z\right)}{2}\)
\(\sqrt{2y\left(z+x\right)}\le\frac{\left(2y+z+x\right)}{2}\)
\(\sqrt{2z\left(x+y\right)}\le\frac{\left(2z+x+y\right)}{2}\)
+ lại và rút cái căn 2 ở VT và Tính VP ta được
\(\sqrt{2}\left(Pain\right)\le\frac{4}{2}\left(x+y+z\right)\) (x+y+z=18 căn 2)
\(\sqrt{2}\left(Pain\right)\le2\left(18.\sqrt{2}\right)\) ( rút gọn căn 2 với căn 2 )
\(Pain\le36\)
vì Pain năm ở dưới mẫu suy ra dấu \(\le\) thành dấu \(\ge\)
thay vào ta được
\(\frac{9}{Pain}\ge\frac{9}{36}=\frac{1}{4}\)
\(\frac{4}{x^2+7}=\frac{4}{x^2+1+y^2+1+z^2+1+x^2+1}\le\frac{4}{4x+2y+2z}=\frac{2}{2x+y+z}\)
đến đây tự làm nha
Bất đẳng thức bị ngược dấu rồi!
Ta có: \(x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(z+x\right)\)
Tương tự ta có: \(y+zx=\left(x+y\right)\left(y+z\right);z+xy=\left(y+z\right)\left(z+x\right)\)
Áp dụng BĐT Côsi cho hai số dương ta có:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\)
\(\Rightarrow\text{Σ}_{cyc}\frac{x}{x+yz}=\frac{\text{Σ}_{cyc}\left[x\left(y+z\right)\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\frac{2\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=2+\frac{2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\le2+\frac{2xyz}{8xyz}=2+\frac{1}{4}=\frac{9}{4}\)
Đẳng thức xảy ra\(\Leftrightarrow x=y=z=\frac{1}{3}\)
\(\left(x+y+z\right)^3\ge\left(3\sqrt[3]{xyz}\right)^3=27xyz\) ( Cosi )
3 cách :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}=\frac{3}{\sqrt[3]{xyz}}\ge\frac{3}{\frac{x+y+z}{3}}=\frac{9}{x+y+z}\) ( Cosi 2 lần )
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)\(\Leftrightarrow\)\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ( Cosi 2 tích )
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\) ( Cauchy-Schwarz dạng Engel )
Chúc bạn học tốt ~
Áp dụng cô si
\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\\\frac{1}{c}+\frac{1}{b}\ge2\sqrt{\frac{1}{cb}}\\\frac{1}{a}+\frac{1}{c}\ge2\sqrt{\frac{1}{ac}}\end{cases}}\)\(\Rightarrow\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}\)
\("="\Leftrightarrow a=b=c=0\)
\(\hept{\begin{cases}\sqrt{x}\le\frac{x+1}{2}\\\sqrt{y-1}\le\frac{y-1+1}{2}\\\sqrt{z-2}\le\frac{z-2+1}{2}\end{cases}}\)\(\Rightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+1+y-1+1+z-2+1}{2}\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+y+z}{2}\)
\("="\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
Sửa ĐK của c) : a, b, c > 0
Áp dụng bất đẳng thức Cauchy ta có :
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}=\frac{2}{\sqrt{ab}}\)
\(\frac{1}{b}+\frac{1}{c}\ge2\sqrt{\frac{1}{bc}}=\frac{2}{\sqrt{bc}}\)
\(\frac{1}{c}+\frac{1}{a}\ge2\sqrt{\frac{1}{ca}}=\frac{2}{\sqrt{ca}}\)
Cộng các vế tương ứng
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ab}}+\frac{2}{\sqrt{bc}}+\frac{2}{\sqrt{ca}}\)
=> \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)
=> đpcm
Đẳng thức xảy ra khi a = b = c
https://olm.vn/hoi-dap/detail/238943826197.html . tương tự nha bạn đều ở phần giả sử tráo đổi 1 tí
BĐT cần chứng minh tương đương với : \(\frac{\left(x+z\right)^2}{xz}\ge\frac{y\left(x+z\right)}{xz}+\frac{x+z}{y}\)
\(\Leftrightarrow\frac{x+z}{xz}\ge\frac{y}{xz}+\frac{1}{y}\Leftrightarrow y\left(x+z\right)\ge y^2+xz\)
\(\Leftrightarrow y^2-y\left(x+z\right)+xz\le0\Leftrightarrow\left(y-x\right)\left(y-z\right)\le0\) ( luôn đúng vì \(z\ge y\ge x>0\))
Vậy BĐT đã được chứng minh khi x = y = z
Áp dụng bất đẳng thức Schwartz vào biểu thức sau được : \(\left(\frac{1}{x}+\frac{1}{y}\right)\left(x+y\right)\ge\left(1+1\right)^2\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)\left(x+y\right)\ge4\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(ĐPCM)
Tương tự :\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(1+1+1\right)^2\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge9\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)(ĐPCM)