K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2015

a,Gọi a là một số nguyên bất kỳ => a có dạng 2k hoặc 2k+1 (k\(\in\)Z)

Xét a = 2k=>\(a^2\)=\(\left(2k\right)^2\)=\(4k^2\)=>\(a^2\) chia 4 dư 0

Xét a= 2k+1=>\(a^2\)=\(\left(2k+1\right)^2\)=\(4k^2\)\(+\)\(4k+1\)=>\(a^2\) chia 4 dư 1

Vậy số chính phương khi chí cho 4 dư 0 hoặc 1.

3 tháng 10 2015

 

3/ Ta có: A=xxyy=1000x+100x+10y+y=1100x+11y=11(100x+y)

Đề A là scp thì 100x+y =11.t2 (t thuộc Z) (1)

Ta có: 1=<x=<9 <=>100=<100x=<900(2)

                0=<y=<9 (3)

Từ (2) và (3)=> 100=<100x+y=<909 (4)

Từ (1) và (4)=> 100x+y thuộc {176;275;396;539;704;891}

Mà 100x+y là số có dạng x0y(có dấu gạch trên đầu)

Do đó, x0y=704=> x=7 và y= 4

 

8 tháng 4 2015

Bài 2:

a/ gọi 3 số chính phương liên tiếp đó là: (x-1)2;x2;(x+1)2

Ta có: (x-1)2+x2+(x+1)2= x2-2x+1+x2+x2+2x+1= 3x2+2 

=> Tổng 3 số cp liên tiếp chia 3 dư 2

c/ Gọi 2 số lẻ đó là (2x-1)2 và (2x+1)2

(2x-1)2+(2x+1)2= 4x2-4x+1 +4x2+4x+1

                       = 8x2+2=2(4x2+1)

Ta có: 2 chia hết cho 2

=> 2(4x2+1) là scp thì 4x2+1 chia hết cho 2

mà 4x2+1 là số lẻ nên không chia hết cho 2

Do đó. tồng bình phương của 2 số lẻ bất kì không phải là số chính phương

 

16 tháng 6 2018

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

29 tháng 11 2018

bài cô giao đi hỏi 

15 tháng 10 2018

Gọi A là số chính phương A = n2 (n ∈ N)

a)Xét các trường hợp:

n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3

n= 3k 1  (k ∈ N) A = 9k2  6k +1 chia cho 3 dư 1

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .

b)Xét các trường hợp

n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.

n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1

= 4k(k+1)+1,

chia cho 4 dư 1(chia cho 8 cũng dư 1)

vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .

     Chú ý: Từ bài toán trên ta thấy:

-Số chính phương chẵn chia hết cho 4

-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).

bạn à câu C hình như bạn viết thiếu đề

12 tháng 1 2016

Ý bạn là: CMR:Tổng bình phương của 4 số tự nhiên liên tiếp không phải là số chính phương

Gọi 4 số đó là n; n + 1; n + 2; n + 3

Ta có:

Đặt A = n(n + 1)(n + 2)(n + 3)

=> A + 1 = n(n + 1)(n + 2)(n + 3) + 1 

=> A + 1 = [n(n + 3)][(n + 1)(n + 2)] + 1

=> A + 1 = (n2 + 3n)(n2 + 3n + 2) + 1

=> A + 1 = (n2 + 3n)2 + 2(n2 + 3n) + 1

=>  A + 1 = (n2 + 3n + 1)2 là số chính phương

      A = (n2 + 3n)2 + 2(n2 + 3n)

Lại có:

(n2 + 3n)2 < (n2 + 3n) + 2(n2 + 3n) = A và A < A + 1

=> (n2 + 3n)2 < A < A + 1

=> (n2 + 3n)2 < A < (n2 + 3n + 1)2
=> A không là số chính phương (Vì (n2 + 3n)2 và (n2 + 3n + 1)2 là 2 số chính phương liên tiếp)

Vậy...

tích mình đi

ai tích mình 

mình tích lại 

thanks

28 tháng 7 2018

Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m ∈ N)

=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương

24 tháng 11 2017

Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)

Có : A = (2k+1)^2+(2q+1)^2 = 4k^2+4k+1+4q^2+4q+1

 = 4.(k^2+k+q^2+q)+2

Ta thấy A chia hết cho 2 nguyên tố

Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4

=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2

=> A ko chính phương

=> ĐPCM

k mk nha