K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

\(pt< =>x^2-6x+9=x^2-6x+74\) 

<=> 9 = 74 ( vô lí ) => pt vô nghiệm 

\(a)\)

\(21\left(x+3\right)^3:\left(3x+9\right)^2\)

\(=[21\left(x+3\right)^3]:[3^2\left(x+3\right)^2]\)

\(=7\left(x+3\right):3\)

Thay vào ta được: \(7.\frac{\left(-6+3\right)}{3}=7.\left(-3\right):3=-7\)

\(b)\)

Thay vào ta được:

\(\left(2.2^2-5.2+3\right)^4:[\left(2.2-3\right)^3:\left(2-1\right)^2]\)

\(=\left(2.4-10+3\right)^4:[\left(4-3\right)^31^2]\)

\(=1^4:\left(1^3.1\right)\)

\(=1:1\)

\(=1\)

\(c)\)

Thay vào ta được:

\(36.10^4.7^3:\left(-6.10^3.7^2\right)\)

\(=-6.10.7\)

\(=-420\)

27 tháng 7 2021

a, \(49x^2-70x+25=\left(7x\right)^2-2.7x.5+5^2=\left(7x-5\right)^2\)

Thay x = 5 vào biểu thức trên : \(\left(35-5\right)^2=30^2=900\)

b, \(x^3+12x^2+48x+64=\left(x+4\right)^3\)

Thay x = 6 vào biểu thức trên ta được : \(\left(6+4\right)^3=1000000\)

3, \(4x^2+4xy+y^2=\left(2x+y\right)^2\)

Thay x = -6 ; y = 2 vào biểu thức trên ta được : \(\left(-12+2\right)^2=100\)

27 tháng 7 2021

các bạn ơi

25 tháng 4 2020

1.(x -5)^2 - 25 =0

=> (x - 5)^2 = 25

=> x - 5 = 5 hoặc x - 5 = -5

=> x = 10 hoặc x = 0

vậy_

2. (x -2)^3 =27

=> x - 2 = 3

=> x = 5

vậy_

3. 3(x -7) + 2x(x+2) = 2x^2

=> 3x - 21 + 2x^2 + 4x = 2x^2

=> 7x - 21 = 0

=> 7x = 21

=> x = 3

vậy_

4. (x^2 - 4) (x +8) =0

=> x^2 - 4 = 0 hoặc x + 8 = 0

=> x^2 = 4 hoặc x = -8

=> x = 2 hoặc x = -2 hoặc x = -8

vậy_

5. x^ 2 + 3x = 0

=> x(x + 3) = 0 

=> x = 0 hoặc x + 3 = 0

=> x = 0 hoặc x = -3

vậy_

6. 3x^3 - 3x = 0

=> 3x(x^2 - 1) = 0

=> 3x(x - 1)(x + 1) = 0

=> x = 0 hoặc x = 1 hoặc x = -1

vậy_

7. (x +1)^2 = ( 2x +3)^2

=> (x + 1 + 2x + 3)(x + 1 - 2x - 3) = 0

=> (3x + 3)(-x - 2) = 0

=> x = -1 hoặc x = -2

vậy_

Bài làm

1) ( x - 5 )2 - 25 = 0

<=> ( x - 5 - 5 )( x - 5 + 5 ) = 0

<=> x( x - 10 ) = 

<=> \(\orbr{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=10\end{cases}}}\)

Vậy S = { 0; 10 }

2) \(\left(x-2\right)^3=27\)

\(\Leftrightarrow\left(x-2\right)^3=3^3\)

\(\Leftrightarrow x-2=3\)

\(\Leftrightarrow x=5\)

Vậy x = 5 là nghiệm phương trình.

3) \(3\left(x-7\right)+2x\left(x+2\right)=2x^2\)

\(\Leftrightarrow3x+2x^2+4x-2x^2=21\)

\(\Leftrightarrow7x=21\)

\(\Leftrightarrow x=\frac{21}{7}=3\)

Vậy x = 3 là nghiệm phương trình

4) \(\left(x^2-4\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=\pm2\\x=-8\end{cases}}}\)

Vậy S = { 2; -2; -8 }

5) \(x^2+3x=0\)

\(\Leftrightarrow x\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}}\)

Vậy S = { 0; -3 } 

6) \(3x^3-3x=0\)

\(\Leftrightarrow3x\left(x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)

Vậy S = { +1; 0 }

7) \(\left(x+1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left(x+1\right)^2-\left(2x+3\right)^2=0\)

\(\Leftrightarrow\left(x+1-2x-3\right)\left(x+1+2x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-x-2=0\\3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{4}{3}\end{cases}}}\)

Vậy S = { -2; -4/3 }

# Học tốt #

20 tháng 9 2020

1) Ta có: \(2\left(x-y\right)+\left(x-y\right)^2+\left(y-x\right)^2\)

\(=2\left(-3-1000\right)+\left(-3-1000\right)^2+\left(3+1000\right)^2\)

\(=-2006+1006009+1006009\)

\(=2010012\)

2) \(x^3+12x^2+48x+64\)

\(=x^3+3.x^2.4+3.x.4^2+4^3\)

\(=\left(x+4\right)^3=\left(6+4\right)^3=10^3=1000\)

3) \(x^3-6x^2+12x-8\)

\(=x^3-3.x^2.2+3.x.2^2-2^3\)

\(=\left(x-2\right)^3=\left(22-2\right)^3=20^3=8000\)

20 tháng 9 2020

\(2\left(x-y\right)+\left(x-y\right)^2+\left(y-x\right)^2\)

=\(2\left(x-y\right)+\left(x-y+y-x\right)\left(x-y-\left(y-x\right)\right)\)

\(2\left(x-y\right)+\left(x-y+y-x\right)\left(x-y-y+x\right)\)

\(2\left(x-y\right)\)

Thay x = -3,y = 1000 vào ta có : 2(x - y) = 2(-3 - 1000) = 2.(-1003) = -2006

\(x^3+12x^2+48x+64\)

\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3=\left(x+4\right)^3\)

Thay x = 6 vào ta có : (6 + 4)3 = 103 = 10000

\(x^3-6x^2+12x-8=x^3-3x^2\cdot2+3x\cdot2^2-2^3\)

\(=\left(x-2\right)^3\)

Thay x = 22 vào ta có : (22 - 2)3 = 203 = 8000

18 tháng 12 2021

a:  =>x-16=74

nên x=90

10 tháng 9 2020

A= -10

B= -5

10 tháng 9 2020

A = (x - 2)(x2 + 2x + 4) - x(x - 2)(x + 2) - 2(2x + 1)

   = x(x2 + 2x + 4) - 2(x2 + 2x + 4) - x(x2 - 4) - 2(2x + 1)

   = x3 + 2x2 + 4x - 2x2 - 4x - 8 - x3 + 4x - 4x - 2

   = (x3 - x3) + (2x2 - 2x2) + (4x - 4x + 4x - 4x) + (-8 - 2) = -10 => không phụ thuộc vào x

B = (x + 1)3 - x(x - 2)2 - 7(x2 + 1) - (1 - x) + 2

   = x3 + 3x2 + 3x + 1 - x(x - 2)(x - 2) - 7x2 - 7 - 1 + x + 2

  =  x3 + 3x2 + 3x + 1 - x(x2 - 4x + 4) - 7x2 - 7 - 1 + x + 2

   = x3 + 3x2 + 3x + 1 - x3  + 4x2 - 4x - 7x2 - 7 - 1 + x + 2 = (x3 - x3) + (3x2 + 4x2 - 7x2) + (3x - 4x + x) + (1 - 7 - 1 + 2) =  - 5 => không phụ thuộc vào x 

2 tháng 6 2018

1. \(x^6-2x^3+1=0\Leftrightarrow\left(x^3-1\right)^2=0\Leftrightarrow x=1\)

2. \(x^6+\dfrac{1}{4}x^3+\dfrac{1}{64}=0\Leftrightarrow\left(x^3\right)^2+2.x^3.\dfrac{1}{8}+\left(\dfrac{1}{8}\right)^2=0\Leftrightarrow\left(x+\dfrac{1}{8}\right)^2=0\Leftrightarrow x=-\dfrac{1}{2}\)4. \(x^3-10x^2+25x=0\Leftrightarrow x^3-5x^2-5x^2+25x=0\)

\(\Leftrightarrow x^2\left(x-5\right)-5x\left(x-5\right)=0\)

\(\Leftrightarrow x\left(x-5\right)^2=0\Leftrightarrow x=5\)

5. \(\dfrac{1}{4}x^3-3x^2+9x=0\)

\(\Leftrightarrow x\left(\dfrac{1}{4}x^2-3x+9\right)=0\)

\(\Leftrightarrow x\left[\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.3+3^2\right]=0\)

\(\Leftrightarrow x\left(\dfrac{1}{2}x-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

6. \(x^5-16x=0\Leftrightarrow x\left(x^4-16\right)=0\Leftrightarrow x\left(x^2-4\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\\x^2=-4\left(l\right)\end{matrix}\right.\)

7. \(4x^2+4x-3=0\Leftrightarrow4x^2-2x^2-6x-3=0\)

\(\Leftrightarrow2x\left(2x-1\right)-3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

8. \(4x^2+28x+48=0\Leftrightarrow4x^2+12x+14x+48=0\)

\(\Leftrightarrow4x\left(x+3\right)+12\left(x+4\right)=0\)

\(\Leftrightarrow\left(4x+12\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-4\end{matrix}\right.\)

9. \(9x^2-12x+3=0\Leftrightarrow9x^2-9x-3x+3=0\Leftrightarrow9x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(9x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

2 tháng 6 2018

|2 - x|2 + 6x - 3 = 0

<=> (x - 2)2 + 6x - 3 = 0

<=> x2 - 4x + 4 + 6x - 3 = 0

<=> x2 + 2x + 1 = 0

<=> (x + 1)2 = 0

<=> x + 1 = 0

<=> x = -1

Bắt phải thể hiện -_-

30 tháng 7 2021

Bài 5 : 

f, bạn xem lại đề hay là tìm x chứa tham số a ? 

g, \(x^2+3x-\left(2x+6\right)=0\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow x=-3;x=2\)

h, \(5x+20-x^2-4x=0\Leftrightarrow5\left(x+4\right)-x\left(x+4\right)=0\)

\(\Leftrightarrow\left(5-x\right)\left(x+4\right)=0\Leftrightarrow x=-4;x=5\)

m, \(x^3-5x^2-x+5=0\Leftrightarrow x^2\left(x-5\right)-\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-5\right)=0\Leftrightarrow x=\pm1;x=5\)

n, \(x\left(x-3\right)-7x+21=0\Leftrightarrow x\left(x-3\right)-7\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-7\right)\left(x-3\right)=0\Leftrightarrow x=3;x=7\)

30 tháng 7 2021

x=7 nha