K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

\(a^3+5a=a\left(a^2+5\right)=a\left[\left(a^2-1\right)+6\right]=a\left(a-1\right)\left(a+1\right)+6a\)

Dễ thấy a(a-1)(a+1) chia hết cho 6 vì là tích của ba số nguyên liên tiếp. Lại có 6a luôn chia hết cho 6

=> đpcm

4 tháng 8 2016

a3 + 5a = a.a.a + 5a = a (a + 1) (a + 2) (a + 3)

Ta có a (a + 1) (a + 2) (a + 3) là tích 4 số tự nhiên liên tiếp => chia hết cho 2 và 3

Vì chia hết cho 2 và 3 mà ƯCLN (2;3) = 1 là hai số nguyên tố cùng nhau nên chia hết cho 2.3 = 6

Vậy...

9 tháng 7 2019

Ta có : a^3 + 5a = a^3 - a + 6a

                          = a(a^2-1^2) + 6a

                          =a(a-1)(a+1) + 6a

 Bạn lần lượt chứng minh a(a-1)(a+1) chia hết cho cả 2 và 3 theo cách gọi a có dạng 2k và 3k , rồi suy ra a (a-1)(a+1) chia hết cho 2.3 = 6 ( vì ( 2;3 ) =1)

mà 6a chia hết cho 6 

Do đó , a(a-1)(a+1) + 6a hay a^3 + 5a chia hết cho 6 .

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 62/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 83/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 94/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 95/CM n^5-5n^3+4n chia hết cho 120 vơi...
Đọc tiếp

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6

2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8

3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9

4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9

5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n

6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n

7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n

8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49

9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương

10/CMR với mọi số tự nhiên n>1:

a/ số n^4 +4 là hợp số

b/ số n^4+4k^4 là hợp số (k là số tự nhiên)

11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5

12/ Số 2^32+1 có là số nguyên tố không?

13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)

14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n

15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia

                               

6
14 tháng 7 2016

nhìn là hết muốn làm

14 tháng 7 2016

sao dài dòng quá vậy, như thế thì ai mà làm nổi, bạn phải hỏi từng bài 1 chứ

Nhìn là muốn chạy rùi

^-^

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 62/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 83/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 94/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 95/CM n^5-5n^3+4n chia hết cho 120 vơi...
Đọc tiếp

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6

2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8

3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9

4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9

5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n

6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n

7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n

8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49

9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương

10/CMR với mọi số tự nhiên n>1:

a/ số n^4 +4 là hợp số

b/ số n^4+4k^4 là hợp số (k là số tự nhiên)

11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5

12/ Số 2^32+1 có là số nguyên tố không?

13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)

14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n

15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia

                               

7
11 tháng 8 2015

đăng giết người à           

11 tháng 8 2015

Nhìn là hết muốn làm.

7 tháng 8 2016

Ta có :

\(A=\left(4n+3\right)^2-25\)

\(=\left(4n+3\right)^2-5^2\)

\(=\left(4n+3+5\right)\left(4n+3-5\right)\)

\(=\left(4n+8\right)\left(4n-2\right)\)

\(=\left[4\left(n+2\right)\right]\left[2\left(2n-1\right)\right]\)

\(=8\left(n+2\right)\left(2n-1\right)\)chia hết cho 8.

Vậy ...

Cảm cơn bạn

14 tháng 7 2018

\(A=\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)

\(=a^3-3ab\left(a+b\right)+b^3+b^3-3bc\left(b+c\right)+c^3+c^3-3ca\left(c+a\right)+a^3\)

\(=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)\(⋮3\)

Lấy  \(a,b,c\)lần lượt chia cho \(2\)ta được tối đa 2 số dư là:  \(0;1\)Do đó tồn tại ít nhất 2 số có cùng số dư khi chia cho 2

\(\Rightarrow\)hiệu của chúng chia hết cho 2

\(\Rightarrow\)\(A⋮2\)

mà  \(\left(2;3\right)=1\)\(\Rightarrow\)\(A⋮6\)