Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng BĐT Cosi:
\(\sqrt{\left(p-a\right)\left(p-b\right)}\le\dfrac{p-a+p-b}{2}=\dfrac{c}{2}\)
\(\sqrt{\left(p-b\right)\left(p-c\right)}\le\dfrac{p-b+p-c}{2}=\dfrac{a}{2}\)
\(\sqrt{\left(p-c\right)\left(p-a\right)}\le\dfrac{p-c+p-a}{2}=\dfrac{b}{2}\)
\(\Rightarrow\left(p-a\right)\left(p-b\right)\left(p-c\right)\le\dfrac{1}{8}abc\)
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{a}+\dfrac{1}{c}\ge\dfrac{4}{a+c}\)
Cộng vế với vế các BĐT trên ta được:
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge4\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\)
Dấu "=" khi a=b=c
Đặt T là vế trái của BĐT, nhân vào biến đổi ta được
\(T=2+\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-3\)
\(T\ge2+\dfrac{2\left(a+b+c\right)}{\sqrt[3]{abc}}+\dfrac{a+b+c}{\sqrt[3]{abc}}-3\)(Sử dụng AM-GM rồi tách)
\(T\ge2+\dfrac{2\left(a+b+c\right)}{\sqrt[3]{abc}}+\dfrac{3\sqrt[3]{abc}}{\sqrt[3]{abc}}-3\)
\(T\ge2\left(1+\dfrac{a+b+c}{\sqrt[3]{abc}}\right)\)(đpcm)
Đẳng thức xảy ra khi a=b=c
Đặt \(a=\dfrac{kx}{y};b=\dfrac{ky}{z};c=\dfrac{kz}{x}\Rightarrow abc=k^3\)
Ta có: \(BDT\Leftrightarrow\dfrac{yz}{kx\left(ky+z\right)}+\dfrac{xz}{ky\left(kz+x\right)}+\dfrac{xy}{kz\left(kx+y\right)}\ge\dfrac{3}{1+k^3}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT=\dfrac{y^2z^2}{kxyz\left(ky+z\right)}+\dfrac{x^2z^2}{kxyz\left(kz+x\right)}+\dfrac{x^2y^2}{kxyz\left(kx+y\right)}\)
\(\ge\dfrac{\left(xy+yz+xz\right)^2}{xyz\left(x+y+z\right)k\left(k+1\right)}\ge\dfrac{3xyz\left(x+y+z\right)}{xyz\left(x+y+z\right)k\left(k+1\right)}=\dfrac{3}{k\left(k+1\right)}\)
Cần chứng minh \(\dfrac{3}{k\left(k+1\right)}\ge\dfrac{3}{1+k^3}\)
\(\Leftrightarrow\dfrac{3\left(k-1\right)^2}{k\left(k+1\right)\left(k^2-k+1\right)}\ge0\) (luôn đúng)