K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Ta có: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Leftrightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

\(\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

24 tháng 6 2017

Ta có:

\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{a+b-a+b}{c+d-c+d}\\ =\dfrac{2a}{2c}=\dfrac{2b}{2d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\rightarrow\) đpcm

Chúc bạn học tốt!!!

14 tháng 2 2018

Đặt: \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có: \(a+\frac{b}{a}-b=bk+\frac{b}{bk}-b=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(c+\frac{d}{c}-d=dk+\frac{d}{dk}-d=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

14 tháng 2 2018

Bài này vẫn còn cách khác để chúng minh nhưng mà làm đặt k thì dễ hiểu hơn

11 tháng 1 2018

Ta có: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Leftrightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{a+a+b-b}{c+c+d-d}=\dfrac{2a}{2c}=\dfrac{a}{c}_{\left(1\right)}.\)

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{a-a+b+b}{c-c+d+d}=\dfrac{2b}{2d}=\dfrac{b}{d}_{\left(2\right)}.\)

Từ \(_{\left(1\right)+\left(2\right)}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\) (t/c tỉ lệ thức).

\(\Rightarrowđpcm.\)

11 tháng 1 2018

a=b*k

c=d*k

thì b*k+b/b*k-b=b*(k+1)/b*(k-1)=k+1/k-1

thì d*k+d/d*k-d=d*(k+1)/d*(k-1)=k+1/k-1

nen suy ra a+b/a-b=c+d/c-d

26 tháng 4 2018

Vì : \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)\(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)

Hay: a+b/c+d

Và: a-b/c-d

cùng = a/c=b/d

vậy : \(\dfrac{a+b}{c+d}\) = \(\dfrac{a-b}{c-d}\) (đpcm)

26 tháng 4 2018

Violympic toán 7

17 tháng 1 2016

a+b/a-b=c+d/c-d suy ra a+b/c+d=a-b/c-d.mà a+b/c+d=a/c=b/d hay a/b=c/d. vậy a/b=c/d( đ.f.c.m)

 


 

4 tháng 11 2016

a) Cách 1: Từ điều kiện \(a,b,c,d\) khác nhau và \(a.d=b.c\)

ta suy ra \(a,b,c,d\ne0\)\(\frac{a}{b}=\frac{c}{d}\left(1\right)\).

Cộng vào hai vế của (1) cùng số 1 ta được:

\(\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}.\)

Cách 2: Theo tính chất của tỉ lệ thức, từ (1) suy ra:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{c+d}{d}=\frac{a+b}{b}.\)

b) Giải tương tự câu a) ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1=\frac{a-b}{c}=\frac{c-d}{d}.\)

Hoặc ta có theo tính chất của tỉ lệ thức

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}.\)

4 tháng 11 2016

theo bài ra , ta có :

ad = cd

=>\(\frac{a}{b}=\frac{c}{d}\) ( 1 )

=> \(\frac{a}{b}+1=\frac{c}{d}+1\)

=>\(\frac{a+b}{b}=\frac{c+d}{d}\) (đpcm)

b/ Từ 1 ở phần a ta có:

\(\frac{a}{b}-1=\frac{c}{d}-1\)

=> \(\frac{a-b}{b}=\frac{c-d}{d}\) (đpcm)

31 tháng 5 2018

\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{2a}{2c}=\dfrac{a}{c}\) \(\left(1\right)\)

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{2b}{2d}=\dfrac{b}{d}\) \(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\), ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

31 tháng 5 2018

Ta có: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

\(\rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)

\(\rightarrow ac-ad+bc-bd=ac+ad-bc-bd\)

\(\rightarrow-ad+bc=ad-bc\)

\(\rightarrow bc+bc=ad+ad\)

\(\rightarrow2bc=2ad\)

\(\rightarrow bc=ad\)

\(\rightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)

Chúc bạn học tốt!

8 tháng 10 2016

Bạn có thể tham khảo tại đây: Câu hỏi của nguyễn hoàng lê thi - Toán lớp 7 | Học trực tuyến