K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)

=>\(\widehat{ABC}+\widehat{ACB}+60^0=180^0\)

=>\(2\left(\widehat{OBC}+\widehat{OCB}\right)=180^0-60^0=120^0\)

=>\(\widehat{OBC}+\widehat{OCB}=60^0\)

Xét ΔBOC có \(\widehat{BOC}+\widehat{OBC}+\widehat{OCB}=180^0\)

=>\(\widehat{BOC}=180^0-60^0=120^0\)

Gọi OH là phân giác của góc BOC

=>\(\widehat{BOH}=\widehat{COH}=\dfrac{\widehat{BOC}}{2}=60^0\)

Ta có: \(\widehat{EOB}+\widehat{BOC}=180^0\)(hai góc kề bù)

=>\(\widehat{EOB}+120^0=180^0\)

=>\(\widehat{EOB}=60^0\)

=>\(\widehat{DOC}=60^0\)

Xét ΔEOB và ΔHOB có

\(\widehat{EOB}=\widehat{HOB}\left(=60^0\right)\)

OB chung

\(\widehat{EBO}=\widehat{HBO}\)

Do đó: ΔEOB=ΔHOB

=>OH=OE

Xét ΔOHC và ΔODC có

\(\widehat{OCH}=\widehat{OCD}\)

CO chung

\(\widehat{COH}=\widehat{COD}\left(=60^0\right)\)

Do đó: ΔOHC=ΔODC
=>OH=OD

=>OE=OD

=>ΔODE cân tại O

b: ΔOHB=ΔOEB

=>BH=BE

ΔOHC=ΔODC
=>HC=DC

BC=BH+CH

mà BH=BE và CH=CD

nên BC=BE+DC

23 tháng 2 2019

Lấy F thuộc  BC sao cho OD là phân giác góc BOC

Dễ dàng tính được góc BOC=120 độ

=> góc BOF = góc COF = 60 do

Góc BOC = góc EOD ( đối đỉnh ) => góc EOD = 120 do 

=> góc DOC = góc EOB = 60 do

Từ đó có 

Tam giác BEO = Tam giác BFO (g.c.g)

​Tam giác CDO = Tam giác CFO (g.c.g)

=> OE = OF và OD = OF => OE = OD => Tam giác EOD cân tại O

=> BE = BF và CD = CF 

 Mà BF+CF=BC => BE + CD = BC

a: BC=căn 6^2+8^2=10cm

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=1

=>AD=3cm

b: Xét ΔABD vuông tại A và ΔEBC vuông tại E có

góc ABD=góc EBC

=>ΔABD đồng dạng với ΔEBC

c: ΔABD đồng dạng với ΔEBC

=>AD/EC=AB/EB

=>AD/AB=EC/EB

=>CD/BC=EC/EB

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

=>ΔABD=ΔACE

b: ΔABD=ΔACE

=>góc ABD=góc ACE

=>góc HBC=góc HCB

=>ΔHBC cân tại H

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

13 tháng 12 2021

Vì BD,CE là phân giác của \(\Delta ABC\) cắt nhau tại I nên I là giao 3 đường phân giác \(\Delta ABC\) (tâm đường tròn ngoại tiếp \(\Delta ABC\))

Do đó AI cũng là phân giác \(\Delta ABC\)

Mà \(\Delta ABC\) cân tại A nên AI cũng là đường cao

Vậy \(AI\bot BC\)

13 tháng 12 2021

Cho tam giác ABC cân ở A các đường phân giác BD,CE cắt nhau tại I Cho ab=5cm, Bc=6cm tính AH và BH