Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy F thuộc BC sao cho OD là phân giác góc BOC
Dễ dàng tính được góc BOC=120 độ
=> góc BOF = góc COF = 60 do
Góc BOC = góc EOD ( đối đỉnh ) => góc EOD = 120 do
=> góc DOC = góc EOB = 60 do
Từ đó có
Tam giác BEO = Tam giác BFO (g.c.g)
Tam giác CDO = Tam giác CFO (g.c.g)
=> OE = OF và OD = OF => OE = OD => Tam giác EOD cân tại O
=> BE = BF và CD = CF
Mà BF+CF=BC => BE + CD = BC
a: BC=căn 6^2+8^2=10cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=1
=>AD=3cm
b: Xét ΔABD vuông tại A và ΔEBC vuông tại E có
góc ABD=góc EBC
=>ΔABD đồng dạng với ΔEBC
c: ΔABD đồng dạng với ΔEBC
=>AD/EC=AB/EB
=>AD/AB=EC/EB
=>CD/BC=EC/EB
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b: ΔABD=ΔACE
=>góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Vì BD,CE là phân giác của \(\Delta ABC\) cắt nhau tại I nên I là giao 3 đường phân giác \(\Delta ABC\) (tâm đường tròn ngoại tiếp \(\Delta ABC\))
Do đó AI cũng là phân giác \(\Delta ABC\)
Mà \(\Delta ABC\) cân tại A nên AI cũng là đường cao
Vậy \(AI\bot BC\)
a: Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)
=>\(\widehat{ABC}+\widehat{ACB}+60^0=180^0\)
=>\(2\left(\widehat{OBC}+\widehat{OCB}\right)=180^0-60^0=120^0\)
=>\(\widehat{OBC}+\widehat{OCB}=60^0\)
Xét ΔBOC có \(\widehat{BOC}+\widehat{OBC}+\widehat{OCB}=180^0\)
=>\(\widehat{BOC}=180^0-60^0=120^0\)
Gọi OH là phân giác của góc BOC
=>\(\widehat{BOH}=\widehat{COH}=\dfrac{\widehat{BOC}}{2}=60^0\)
Ta có: \(\widehat{EOB}+\widehat{BOC}=180^0\)(hai góc kề bù)
=>\(\widehat{EOB}+120^0=180^0\)
=>\(\widehat{EOB}=60^0\)
=>\(\widehat{DOC}=60^0\)
Xét ΔEOB và ΔHOB có
\(\widehat{EOB}=\widehat{HOB}\left(=60^0\right)\)
OB chung
\(\widehat{EBO}=\widehat{HBO}\)
Do đó: ΔEOB=ΔHOB
=>OH=OE
Xét ΔOHC và ΔODC có
\(\widehat{OCH}=\widehat{OCD}\)
CO chung
\(\widehat{COH}=\widehat{COD}\left(=60^0\right)\)
Do đó: ΔOHC=ΔODC
=>OH=OD
=>OE=OD
=>ΔODE cân tại O
b: ΔOHB=ΔOEB
=>BH=BE
ΔOHC=ΔODC
=>HC=DC
BC=BH+CH
mà BH=BE và CH=CD
nên BC=BE+DC