\(\left(\frac{1}{\sqrt{x}+\sqrt{x+1}}+\frac{1}{\sqrt{x}-\sqrt{x-1}}\right):\left(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

a) đk : \(x\ge0\) ; \(x\ne1\)

A=\(\left(\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}+1\right)}-\frac{x+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

\(=\left(\frac{-\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\) \(=\frac{1-\sqrt{x}}{x+1}\)

b) đk : \(x\ne0;x\ne1\)

B=\(\left(\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\left(\frac{-2\sqrt{x}}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\frac{-4x}{\left(x-1\right)^3}\)

2 tháng 7 2019

\(a,\frac{\sqrt{108x^3}}{\sqrt{12x}}=\frac{\sqrt{36.3.x^3}}{\sqrt{3.4.x}}=\frac{6\sqrt{3}.\sqrt{x}^3}{2\sqrt{3}.\sqrt{x}}=3\sqrt{x}^2=3x\)

\(b,\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}=\frac{\sqrt{13}.\sqrt{x^4}.\sqrt{y^6}}{\sqrt{16.13}.\sqrt{x^6}.\sqrt{y^6}}=\frac{\sqrt{13}.x^2y^3}{4\sqrt{13}x^3y^3}=\frac{1}{4x}\)

\(c,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)

\(=\frac{\sqrt{x}^3+\sqrt{y}^3}{\sqrt{x}+\sqrt{y}}-\left(x+2\sqrt{xy}+y\right)\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x-2\sqrt{xy}-y\)

\(=x-\sqrt{xy}+y-x-2\sqrt{xy}-y=-3\sqrt{xy}\)

2 tháng 7 2019

\(d,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Đk chỗ này là \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge\sqrt{1}\Rightarrow x\ge1\)nhé 

\(e,\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}.\frac{y-2\sqrt{y}+1}{\left(x-1\right)^2}\)

\(=\frac{\left(x-1\right)\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)

13 tháng 9 2018

\(B=\frac{-2a\sqrt{a}+2a^2}{\left(\sqrt{a}-\right)\left(a-1\right)}\)

\(C=-x\sqrt{x}+x+\sqrt{x}-1\)

\(D=x-\sqrt{x}+1\)

13 tháng 9 2018

có đáp án kĩ hơn không ạ ?

\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)

_Minh ngụy_

\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )

\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)

_Minh ngụy_

31 tháng 8 2020

Đề bài đâu bn ơi 

Nếu rút gọn thì mình làm cho

Ta có: \(P=\left(\frac{1}{\sqrt{x}}-\sqrt{x}\right):\left(\frac{1-\sqrt{x}}{\sqrt{x}}+\frac{\sqrt{x}-1}{x+\sqrt{x}}\right)\)         (    ĐKXĐ: \(x\ge1\))

    \(\Leftrightarrow P=\left(\frac{1-x}{\sqrt{x}}\right):\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)+\sqrt{x}-1}{\sqrt{x}.\left(\sqrt{x}+1\right)}\right)\)

    \(\Leftrightarrow P=\frac{1-x}{\sqrt{x}}.\frac{\sqrt{x}.\left(\sqrt{x}+1\right)}{1-x+\sqrt{x}-1}\)

    \(\Leftrightarrow P=\left(1-x\right).\frac{\sqrt{x}+1}{\sqrt{x}-x}\)

    \(\Leftrightarrow P=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right).\frac{\sqrt{x}+1}{\sqrt{x}.\left(1-\sqrt{x}\right)}\)

   \(\Leftrightarrow P=\frac{\left(1+\sqrt{x}\right)^2}{\sqrt{x}}\)

   \(\Leftrightarrow P=\frac{x+2\sqrt{x}+1}{\sqrt{x}}\)

31 tháng 8 2020

P=\(\frac{1-x}{\sqrt{x}}:\frac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

P=\(\frac{1-x}{\sqrt{x}}:\frac{1-x+x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

P=\(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{1-\sqrt{x}}\)

P=\(\left(\sqrt{x}+1\right)^2\)

P=\(x+2\sqrt{x}+1\)

NV
2 tháng 4 2020

\(P=1-\left(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2}{\sqrt{x}}-\frac{2-x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)

\(=1-\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{2-x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)

\(=1-\left(\frac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)

\(=1-\frac{\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(x+2\sqrt{x}\right)}\)

\(=1-\frac{\sqrt{x}}{\sqrt{x}-1}=-\frac{1}{\sqrt{x}-1}\)