K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2018

Ta có : \(x^2+y^2+z^2=xy+yz+zx\)

   \(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2zx\)

  \(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

 \(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)+\left(y^2-2yz+z^2\right)=0\)

 \(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)(1)

\(\text{Mà}\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(x-z\right)^2\ge0\\\left(y-z\right)^2\ge0\end{cases}}\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)(2)

\(\text{Từ (1) và (2)}\Rightarrow x-y=y-z=z-x=0\)

                         \(\Rightarrow x=y=z\left(ĐPCM\right)\)

14 tháng 7 2018

a) A=x2-x+1

A = x2 -2 . x . \(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+1-\(\dfrac{1}{4}\)

A =\(\left(x-\dfrac{1}{2}\right)^2\)+\(\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\)

\(\dfrac{3}{4}\)>0

=> \(\left(x-\dfrac{1}{2}\right)^2\)+\(\dfrac{3}{4}\)>0

=> A>0 => A dương.

b) B=4x2+8x+7

=(2x)2+2.2x.2+4+3

=(2x+2)2+3

Mà (2x+2)2+3>0 \(\forall x\)

=> B>0

11 tháng 12 2022

(xyz)^2=(24*48*72)=82944

=>xyz=288 hoặc xyz=-288(loại)

xyz=288

=>z=12; y=6; x=4

=>(x-3)^2017+(y-5)^2018+(z-11)^2019=1+1+1=3

 

15 tháng 7 2017

a/ \(\frac{x}{2}=\frac{y}{4}\)

\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{x^2+y^2}{20}=\frac{2000}{20}=100\)

\(\Rightarrow\orbr{\begin{cases}x=-20\\x=20\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y=-40\\y=40\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}z=-50\\z=50\end{cases}}\)

15 tháng 7 2017

b/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-2y+3z-1+4-9}{2-6+12}=1\)

\(\Rightarrow\hept{\begin{cases}x=3\\y=5\\z=7\end{cases}}\)

10 tháng 7 2018

            \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)  luôn đúng 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)

10 tháng 7 2018

\(x^2+y^2+z^2\ge xy+yz+zx\) \(\forall x;y;z\in R\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx\ge0\)\(\forall x;y;z\in R\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)\(\forall x;y;z\in R\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)\(\forall x;y;z\in R\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)\(\forall x;y;z\in R\) ( luôn đúng)

                                                                          đpcm

Tham khảo nhé