\(\frac{4a^2-3ab}{9a^2+7b^2}=\frac{4c^2-3cd...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)

Ta có: \(\frac{4a^2-3ab}{9a^2+7b^2}=\frac{4\left(bk\right)^2-3b^2k}{9\left(bk\right)^2+7b^2}=\frac{4b^2k^2-3b^2k}{9b^2k^2+7b^2}=\frac{b^2\left(4k^2-3k\right)}{b^2\left(9k^2+7\right)}=\frac{4k^2-3k}{9k^2+7}\left(1\right)\)

Lại có: \(\frac{4c^2-3cd}{9c^2+7d^2}=\frac{4\left(dk\right)^2-3d^2k}{9\left(dk\right)^2+7d^2}=\frac{4d^2k^2-3d^2k}{9d^2k^2+7d^2}=\frac{d^2\left(4k^2-3k\right)}{d^2\left(9k^2+7\right)}=\frac{4k^2-3k}{9k^2+7}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{4a^2-3ab}{9a^2+7b}=\frac{4c^2-3cd}{9c^2+7d}\)

21 tháng 11 2017

Mấy bài dạng này có nhiều cách giải, cách đặt dưới đây luôn thực hiện được

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) suy ra a =b.k và c =d.k

thay a=b.k vào tỉ số thứ nhất, biến đổi và rút gọn cho b2 ta được (4.k2-3k)/(9.k2+7)    (1)

thay c=d.k vào tỉ số thứ hai, biến đổi và rút gọn cho d2 ta được (4.k2-3k)/(9.k2             (2)

Từ (1) và (2) suy ra  đpcm

DD
25 tháng 8 2021

\(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\).

\(\frac{4a^2-3ab}{9a^2+7b^2}=\frac{4b^2t^2-3bt.b}{9b^2t^2+7b^2}=\frac{4t^2-3t}{9t^2+7}\)

\(\frac{4c^2-3cd}{9c^2+7d^2}=\frac{4d^2t^2-3dt.d}{9d^2t^2+7d^2}=\frac{4t^2-3t}{9t^2+7}\)

Suy ra đpcm. 

24 tháng 12 2021

giúp mình với, mai mình kiểm tra cuối kỉ rồi

26 tháng 2 2020

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

ta có : \(\frac{4a-3b}{a}=\frac{4bk-3b}{bk}=\frac{b\left(4k-3\right)}{bk}=\frac{4k-3}{k}\)

\(\frac{4c-3d}{c}=\frac{4dk-3d}{dk}=\frac{d\left(4k-3\right)}{dk}=\frac{4k-3}{k}\)

\(\Rightarrow\frac{4a-3b}{a}=\frac{4c-3d}{c}\)

4 tháng 10 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=k=>a=bk,c=dk\)

\(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2\left(bk^2\right)-3bkb+5b^2}{2b^2+3bkb}=\frac{2b^2.k^2-3kb^2+5b^2}{2b^2+3b^2.k}\)\(=\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+5}{2+3k}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)\(=\frac{2\left(dk\right)^2-3dkd+5d^2}{2d^2+3dkd}=\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3dkd}\)

Tương tự nhóm tiếp là ra

=>bằng nhau

4 tháng 1 2018

TỰ TÚC NHA!

25 tháng 3 2020

Bạn tham Khảo: https://hoc24.vn/hoi-dap/question/230602.html

19 tháng 2 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow a=bk;c=dk\)

\(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2b^2k^2-3b^2k+5b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+5}{3k+2}\)

\(\frac{2c^2-3cd+5d^2}{2d^2+3cd}=\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+5\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+5}{3k+2}\)

nên 2 phân số trên bằng nhau (đpcm)

19 tháng 2 2019

Đặt: \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có : \(\frac{2a^2-3ab+5b^2}{2b^2+3ab}\)

<=> \(\frac{2b^2k^2-3b^2k+5b^2}{2b^2+3b^2k}\)

<=> \(\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}\)

<=> \(\frac{2k^2-3k+5}{2+3k}\left(1\right)\)

Ta có: \(\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)

<=> \(\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}\)

<=> \(\frac{d^2\left(2k^2-3k+5\right)}{d^2\left(2+3k\right)}\)

<=> \(\frac{2k^2-3k+5}{2+3k}\left(2\right)\)

Từ 1 và 2 => đpcm