
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



ta có: muốn n/2n+3 là phân số tối giản thì (n,2n+3)=1
Gọi ƯCLN(n,2n+3) là :d
suy ra: n chia hết cho d và 2n+3 chia hết cho d
suy ra : (2n+3) - 2n chia hết cho d
3 chia hết cho d
suy ra: d thuộc Ư(3) =( 3,1)
ta có: 2n +3 chia hết cho 3
2n chia hết cho 3
mà (n,3)=1 nên n chia hết cho 3
vậy khi n=3k thì (n,2n+3) = 3 (k thuộc N)
suy ra : n ko bằng 3k thì (n,2n+3)=1
vậy khi n ko có dạng 3k thì n/2n+3 là phân số tối giản
a/ n rút gọn đi còn 1/2+3 bằng 1/5
b/rút gọn 3a hết còn 1/1 vậy bằng 1

A= (3a + 2 ) . ( 2a -1 ) + ( 3 -a ) ( 6a + 2 ) - 17 ( a - 1 )
=6a2+a-2-6a2+16a+6-17a+17
=21
Vậy........
A =\(\dfrac{n+2}{n+1}\) với n \(\ne\) 3
a, tìm n để A là số nguyên
b, chứng minh A là phân số tối giản

a) Để A là số nguyên thì \(n+2⋮n+1\)
\(\Leftrightarrow n+1+1⋮n+1\)
mà \(n+1⋮n+1\)
nên \(1⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(1\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)(thỏa ĐK)
Vậy: \(n\in\left\{0;-2\right\}\)
b) Gọi d\(\in\)ƯC(n+2;n+1)
\(\Leftrightarrow\left\{{}\begin{matrix}n+2⋮d\\n+1⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(n+2;n+1\right)=1\)
hay A là phân số tối giản(Đpcm)

quy đồng :\(\frac{1}{2a};\frac{2}{3a};\frac{3}{4a}\)
\(2a=2a\);\(3a=3a\);\(4a=2^2a\)
\(BCNN\left(2a,3a,4a\right)=12a\)
\(\Rightarrow\frac{1}{2a}=\frac{6}{12a}\);\(\frac{2}{3a}=\frac{8}{12a}\);\(\frac{3}{4a}=\frac{9}{12a}\)
nha !


gọi \(\text{Ư}CLN_{\left(3a+4;2a+3\right)}=d\)
\(\Rightarrow\hept{\begin{cases}3a+4⋮d\\2a+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3a+4\right)⋮d\\3\left(2a+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6a+8⋮d\\6a+9⋮d\end{cases}}}\)
\(\Rightarrow6a+9-\left(6a+8\right)⋮d\)
\(\Rightarrow6a+9-6a-8⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
vậy phân số \(\frac{3a+4}{2a+3}\) là phân số tối giản
\(\frac{3a+4}{2a+3}\)
Gọi d = ƯCLN ( 3a + 4 ; 2a + 3 )
Ta có :
3a + 4 \(⋮\)d ; 2a + 3 \(⋮\)d
=> 2 ( 3a + 4 ) \(⋮\)d ; 3 ( 2a + 3 ) \(⋮\)d
=> 6a + 8 \(⋮\)d ; 6a + 9 \(⋮\)d
=> ( 6a + 9 ) - ( 6a + 8 ) \(⋮\)d
=> 1 \(⋮\)d
Vậy ...........