\(\frac{1}{3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

lên google gõ là ra hoặc có toán nâng cao và phát triển 8 thì dở ra

17 tháng 7 2015

x+y+z=1

=>(x+y+z)2=1

=>x2+y2+z2+2(xy+yz+zx)=1

Do (x-y)2>0

=> x2+y2>2xy

Tương tự y2+z2>2yz

z2+x2>2xz

=>x2+y2+y2+z2+z2+x2>2xy+2yz+2zx

=>3(x2+y2+z2)>x2+y2+z2+2(xy+yz+zx)=1

=>x2+y2+z2>1/3

2 tháng 12 2016

vay la sao

2 tháng 12 2016

thì là các bạn chứng minh sao cho vế trái >= vế phải

4 tháng 8 2019

Đặt \(\left\{{}\begin{matrix}xy=a\\yz=b\\zx=c\end{matrix}\right.\)

Giả thiết \(\Leftrightarrow a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+3a^2b+3ab^2+c^3-3abc-3a^2b-3ab^2=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ca\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)

+) TH1: \(a+b+c=0\Leftrightarrow xy+yz+zx=0\)

Biến đổi linh tinh P chắc là ra :D

+) TH2: \(a=b=c\Leftrightarrow xy=yz=zx\Leftrightarrow x=y=z\)

\(P=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{z+x}{x}=\frac{2y}{y}\cdot\frac{2z}{z}\cdot\frac{2x}{x}=2\cdot2\cdot2=8\)

Vậy....

4 tháng 8 2019

TH1: \(xy+yz+zx=0\)

\(\Leftrightarrow z\left(x+y\right)=-xy\)

\(\Leftrightarrow x+y=\frac{-xy}{z}\)

Vì vai trò của x, y, z là như nhau nên ta cũng có :

\(\left\{{}\begin{matrix}y+z=\frac{-yz}{x}\\z+x=\frac{-zx}{y}\end{matrix}\right.\)

Ta có \(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(P=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{z+x}{x}\)

\(P=\frac{\frac{-xy}{z}\cdot\frac{-yz}{x}\cdot\frac{-zx}{y}}{xyz}\)

\(P=\frac{\frac{-x^2y^2z^2}{xyz}}{xyz}\)

\(P=\frac{-xyz}{xyz}=-1\)

Vậy....

29 tháng 1 2017

P.An hở

25 tháng 5 2020

ÁP dụng BĐT Shwars có:

VT=\(\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

9 tháng 4 2017

Áp dụng BĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ta có: 

\(\left(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\right)^2\ge3\left(x^2+y^2+z^2\right)=9\)

\(\Rightarrow\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\ge9\)

Đẳng thức xảy ra khi \(x=y=z=1\)

15 tháng 7 2017

a/ \(\frac{x}{2}=\frac{y}{4}\)

\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{x^2+y^2}{20}=\frac{2000}{20}=100\)

\(\Rightarrow\orbr{\begin{cases}x=-20\\x=20\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y=-40\\y=40\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}z=-50\\z=50\end{cases}}\)

15 tháng 7 2017

b/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-2y+3z-1+4-9}{2-6+12}=1\)

\(\Rightarrow\hept{\begin{cases}x=3\\y=5\\z=7\end{cases}}\)

21 tháng 1 2018

Ai lm giúp mk vs câu nào cũng được. Ai làm xong sớm nhất sẽ được tick