Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức \(AM-GM\) cho 2 số dương ta có:
\(\left\{{}\begin{matrix}\dfrac{a+b}{2}\ge\sqrt{ab}\\\dfrac{b+c}{2}\ge\sqrt{bc}\\\dfrac{a+c}{2}\ge\sqrt{ac}\end{matrix}\right.\)
Cộng theo 3 vế ta có:
\(\dfrac{a+b}{2}+\dfrac{b+c}{2}+\dfrac{a+c}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
\(\Rightarrow\dfrac{1}{2}a+\dfrac{1}{2}b+\dfrac{1}{2}b+\dfrac{1}{2}c+\dfrac{1}{2}a+\dfrac{1}{2}c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
\(\Rightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\left(đpcm\right)\)
\(a=b=c\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=2ab\\b^2+c^2=2bc\\a^2+c^2=2ac\end{matrix}\right.\)
Cộng theo 3 vế ta có:
\(a^2+b^2+b^2+c^2+a^2+c^2=2ab+2bc+2ac\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2=ab+bc+ac\)
Ngược lại,khi \(a\ne b\ne c\) thì \(\left\{{}\begin{matrix}a^2+b^2>2ab\\b^2+c^2>2bc\\a^2+c^2>2ac\end{matrix}\right.\) ta có thể dễ dàng cm được \(a^2+b^2+c^2>ab+bc+ac\)
\(a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)(1)
Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(a-c\right)^2\ge0\end{cases}}\forall a,b,c\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\left(\forall a,b,c\right)\)(2)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\Rightarrow a=b=c\)
Vậy \(a=b=c\)
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow a=b=c\)
Thế này nhé ^^
- Ta có : \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(=\left(a+b+c\right)\left[\left(a^2+2ab+b^2\right)-bc-ac+c^2-3ab\right]\)
\(=\left[\left(a+b\right)+c\right].\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b\right)-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=a^3+b^3+c^3-3abc\)
- \(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\frac{\left(a+b+c\right)}{2}\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\right]=0\)
\(\Leftrightarrow\frac{\left(a+b+c\right)}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)
TL:
1)
Ta có: \(2a^2+2b^2+2c^2=2ab+2ac+2bc\)
\(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
\(\Rightarrow\left(a-b\right)^2=0\) và\(\left(a-c\right)^2=0\) và \(\left(b-c\right)^2=0\)
\(\Rightarrow a-b=0\) và \(â-c=0\) và \(b-c=0\)
=>a=b=c(đpcm)
a) a2 + b2 + c2 = ab + ac + bc
=> 2a2 + 2b2 + 2c2 = 2ab + 2ac + 2bc
=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
=> (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0
=> (a - b)2 + (a - c)2 + (b - c)2 = 0
Do 3 hạng tử trên đều có giá trị lớn hơn hoặc bằng 0 nên a - b = a - c = b - c = 0
=> a = b = c
b) a3 + b3 + c3 = 3abc
=> a3 + b3 + c3 - 3abc = 0
=> a3 + 3a2b + 3ab2 + b3 + c3 - 3abc - 3a2b - 3ab2 = 0
=> (a + b)3 + c3 - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + 2ab + b2 - bc - ac + c2) - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + b2 + c2 - ab - bc - ac) = 0
=> a + b + c = 0
hoặc a2 + b2 + c2 = ab + bc + ac => a = b = c
Ta có: \(a^2+b^2+c^2=ab+bc+ac\)
\(\Rightarrow2.\left(a^2+b^2+c^2\right)=2.\left(ab+bc+ac\right)\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2ac+c^2\right)+\left(c^2-2ac+a^2\right)\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) (BĐT luôn đúng)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)
\(a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(b^2-2ab+a^2\right)+\left(c^2-2bc+b^2\right)=0\)
\(\Leftrightarrow\left(a-c\right)^2+\left(b-a\right)^2+\left(c-b\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-c=0\\b-a=0\end{cases}}\) \(\Leftrightarrow a=b=c\left(đpcm\right)\)