Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)
Ta có:
\(\frac{1}{\sqrt{x}+\sqrt{x-1}}=\frac{\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}=\sqrt{x}-\sqrt{x-1}\)
Do đó:
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)
\(\Leftrightarrow A=\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+\sqrt{3}-\sqrt{4}+...+\sqrt{n-1}+\sqrt{n}\)
\(\Leftrightarrow A=\sqrt{n}-1\left(dpcm\right)\)
\(A=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+.......+\frac{\sqrt{n}-\sqrt{n-1}}{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n}-1\right)}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+........+\frac{\sqrt{n}-\sqrt{n-1}}{n-\left(n-1\right)}\)
\(=\sqrt{2}-\sqrt{1}+...........+\sqrt{n}-\sqrt{n-1}\)
\(=\sqrt{n}-\sqrt{1}=\sqrt{n}-1\)
bài B tương tự
a) Ta có \(\frac{1}{n+k}>\frac{1}{2n}\)với k=1;2;...;n-1
=> \(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}>\frac{1}{2n}+\frac{1}{2n}+\frac{1}{2n}+....+\frac{1}{2n}=\frac{n}{2n}=\frac{1}{2}\)
Mặt khác ta có \(\frac{1}{n+k}+\frac{1}{n\left(+\left(n+1-k\right)\right)}< \frac{3}{2n}\)
\(\Leftrightarrow3k^2+3nk+n+3k\forall k=1;2;...;n\)
Với k=1 ta có \(\frac{1}{n+1}+\frac{1}{n+n}< \frac{3}{2n}\)
Với k=2 ta có \(\frac{1}{n+2}+\frac{1}{n+\left(n-1\right)}< \frac{3}{2n}\)
..........................................
Với k=n ta có \(\frac{1}{n+n}+\frac{1}{n+1}< \frac{3}{2n}\)
Cộng từng vế của 2 BĐT trên ta được
\(2\left(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}\right)< \frac{3}{2n}+\frac{3}{2n}+....+\frac{3}{2n}=\frac{3n}{2n}=\frac{3}{2}\)
\(\Rightarrow\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}< \frac{3}{4}\)(đpcm)
Không cần chứng minh \(\frac{1}{2}< \frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}\)
Dạng tổng quát : \(\sqrt[k+1]{\frac{k+1}{k}}>\sqrt[k+1]{\frac{k+1}{k+1}}=1\) với k = 1;2;3; ... ; n
\(\Rightarrow a=\sqrt{2}+\sqrt[3]{\frac{3}{2}}+\sqrt[4]{\frac{4}{3}}+...+\sqrt[n+1]{\frac{n+1}{n}}>n\left(1\right)\)
Áp dụng BĐT AM - GM cho k+1 số dương ta có :
\(\sqrt[k+1]{\frac{k+1}{k}}=\sqrt[k+1]{1.1.1...1.\frac{k+1}{k}}< \frac{1+1+1...+1+\frac{k+1}{k}}{k+1}=\frac{1.k}{k+1}\) \(+\frac{k+1}{\frac{k}{k+1}}\)
\(\Leftrightarrow\sqrt[k+1]{\frac{k+1}{k}}< \frac{k}{k+1}+\frac{1}{k}=1-\frac{1}{k+1}+\frac{1}{k}=1+\left(\frac{1}{k}-\frac{1}{k+1}\right)\)
\(< 1+\frac{1}{k\left(k+1\right)}\)
Áp dụng vào bài ta được :
\(a< \left(1+\frac{1}{1.2}\right)\left(1+\frac{1}{2.3}\right)\left(1+\frac{1}{3.4}\right)+...+\left(1+\frac{1}{n\left(n+1\right)}\right)\)
\(a< n+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\right)\)
\(a< n+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}\right)\)
\(a< n+\left(1-\frac{1}{n+1}\right)< n+1\left(2\right)\)
Từ (1) và (2) suy ra phần nguyên của a là n
Ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}.\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=\sqrt{n}.\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n-1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(< \left(1+\frac{\sqrt{n+1}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=2.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Áp dụng vào bài toán ta được
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=2.\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)
Vậy \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
\(\frac{1}{2\sqrt{1}}\)+\(\frac{1}{3\sqrt{2}}\)+...+\(\frac{1}{\left(n+1\right)\sqrt{n}}\)<2
Ta có : \(\sqrt[k+1]{\frac{k+1}{k}}>1\) với \(k=1,2,...,n\)
Áp dụng BĐT AM - GM ta có :
\(\sqrt[k+1]{\frac{k+1}{k}}=\sqrt[k+1]{\frac{1.1...1}{k}.\frac{k+1}{k}}\)
\(< \frac{1+1+1+...+1+\frac{k+1}{k}}{k+1}=\frac{k}{k+1}+\frac{1}{k}=1+\frac{1}{k\left(k+1\right)}\)
Suy ra \(1< \sqrt[k+1]{\frac{k+1}{k}}< 1+\left(\frac{1}{k}-\frac{1}{k+1}\right)\)
Lần lượt cho \(k=1,2,3,...,n\) rồi cộng lại được :
\(n< \sqrt{2}+\sqrt[3]{\frac{3}{2}}+...+\sqrt[n+1]{\frac{n+1}{n}}< n+1-\frac{1}{n}< n+1\)
Vậy phần nguyên a là n
Chúc bạn học tốt !!!