K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c: (3x-2)(x+3)<0

=>x+3>0 và 3x-2<0

=>-3<x<2/3

d: \(\dfrac{x-2}{x-10}>=0\)

=>x-10>0 hoặc x-2<=0

=>x>10 hoặc x<=2

e: \(3x^2+7x+4< 0\)

\(\Leftrightarrow3x^2+3x+4x+4< 0\)

=>(x+1)(3x+4)<0

=>-4/3<x<-1

13 tháng 8 2016

a.

\(f\left(x\right)=x^3-x^2+3x-3=x^2\left(x-1\right)+3\left(x-1\right)=\left(x^2+3\right)\left(x-1\right)\)

f(x) > 0

<=> x2 + 3 và x - 1 cùng dấu

  • \(\Leftrightarrow\hept{\begin{cases}x^2+3>0\\x-1>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>0\\x>1\end{cases}}\Leftrightarrow x>1\)
  • \(\Leftrightarrow\hept{\begin{cases}x^2+3< 0\\x-1< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2< -3\\x< 1\end{cases}\Rightarrow}\) loại

Vậy x > 1

b.

\(g\left(x\right)=x^3+x^2+9x+9=x^2\left(x+1\right)+9\left(x+1\right)=\left(x^2+9\right)\left(x+1\right)\)

g(x) < 0

<=> x2 + 9 và x + 1 khác dấu

  • \(\Leftrightarrow\hept{\begin{cases}x^2+9< 0\\x+1>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2< -9\\x>1\end{cases}\Rightarrow}\) loại
  • \(\Leftrightarrow\hept{\begin{cases}x^2+9>0\\x+1< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2>-9\\x< -1\end{cases}}\Rightarrow\)loại

Vậy không tìm được x thỏa mãn yêu cầu đề.

13 tháng 8 2016

??????

15 tháng 10 2018

\(1.x^3+2x+x^2=x\left(x^2+x+2\right)\)

\(2.2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)

\(3.-3x^3-5x^2+8x=-3x^3+3x^2-8x^2+8x\)

\(=-3x^2\left(x-1\right)-8x\left(x-1\right)=\left(3x^2+8x\right)\left(1-x\right)\)

\(=x\left(3x+8\right)\left(1-x\right)\)

\(4.x^2+4x-5=x^2-x+5x-5=\left(x-1\right)\left(x+5\right)\)

\(5.6x^2-3x-3=6x^2-6x+3x-3=3\left(x-1\right)\left(2x+1\right)\)

\(6.3x^2-2x-5=3x^2+3x-5x-5=\left(x+1\right)\left(3x-5\right)\)

\(8.x^2-2x-4y^2-4y=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)\(=\left(x+2y\right)\left(x-y-2\right)\)

\(9.x^3+2x^2y+xy^2-9x=x\left(x^2+2xy+y^2-9\right)\)

\(=x\left(x+y-3\right)\left(x+y+3\right)\)

\(10.x^2-y^2+6x+9=\left(x+3-y\right)\left(x+3+y\right)\)

15 tháng 10 2018

Cam on ban nhieu nhe

17 tháng 8 2020

a, \(12-2\left(1-x\right)^2=\left(3x-2\right)\left(2x-3\right)\)

\(< =>12-2\left(1-2x+x^2\right)=6x^2-9x-4x+6\)

\(< =>12-2+4x-2x^2=6x^2-13x+6\)

\(< =>10+4x-2x^2-6x^2+13x-6=0\)

\(< =>-8x^2+17x+4=0< =>\orbr{\begin{cases}x=\frac{17-\sqrt{417}}{16}\\x=\frac{17+\sqrt{417}}{16}\end{cases}}\)

b, \(10x+3-5x=4x+12< =>5x+3-4x-12=0\)

\(< =>x-9=0< =>x=9\)

c, \(11x+42-2x=100-9x-22< =>9x+42-100+9x+22=0\)

\(< =>18x+64-100=0< =>18x-36=0< =>x=\frac{36}{18}=2\)

d, \(2x-\left(3-5x\right)=4\left(x+3\right)< =>2x-3+5x=4x+12\)

\(< =>7x-3-4x-12=0< =>3x-15=0< =>x=\frac{15}{3}=5\)

e, \(2\left(x-3\right)+5x\left(x-1\right)=5x^2< =>2x-6+5x^2-5=5x^2\)

\(< =>2x-11+5x^2-5x^2=0< =>2x-11=0< =>x=\frac{11}{2}\)

f, \(-6\left(1,5-2x\right)=3\left(-15+2x\right)< =>-6\left(\frac{3}{2}-2x\right)=3\left(2x-15\right)\)

\(< =>-9+12x-6x+45=0< =>6x+36=0< =>x=-6\)

g, \(14x-\left(2x+7\right)=3x+12x-13< =>14x-2x-7=15x-13\)

\(< =>12x-7-15x+13=0< =>-3x+6=0< =>x=-2\)

h, \(\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)

\(< =>x^2-16-6x+4=x^2-8x+16\)

\(< =>x^2-6x-12-x^2+8x-16=0\)

\(< =>2x-28=0< =>x=\frac{28}{2}=14\)

q, \(4\left(x-2\right)-\left(x-3\right)\left(2x-5\right)=?\)thiếu đề

12 tháng 8 2018

bài 2

P= (x+1)(x2-x+1)+x-(x-1)(x2+x+1)+2010 với x = -2010

= (x3+1) + x - (x3-1) + 2010

= x3 + 1 + x - x3 + 1 + 2010

= x + 2 + 2010

= 2010 + 2 + 2010

=4022

Q=16x(4x2-5)-(4x+1)(16x2-4x + 1) với x = 1/5 

= (4x)3-16.5x - [(4x)3+1]

= (4x)3 - 16.5x - (4x)3 - 1

= -16.5x - 1

= -16.5.1/5 - 1

= -16-1

=-17

12 tháng 8 2018

a) (x-3)(x2+3x+9)-x(x-4)(x+4)=41

<=> x3 - 33 - x(x2 - 42) = 41

<=> x3 - 27 - x3 + 16x = 41

<=> 16x = 68

<=> x= 4,25

b) (x+2)(x2-2x+4)-x(x2+2)=4

<=> x3 + 23 - x - 2x =4

<=> 8 - 2x = 4

<=> 2x = 4

<=> x= 1/2

12 tháng 10 2019

d/x2-x-1/4

=-(x2+2.x.1/2+(1/2)2

=-(x+1/2)2

=(x-1/2)2

12 tháng 10 2019

Đưa về hằng đẳng thức :

c) \(\)Câu này đề sai nhé:

Phải là: \(\left(x+3\right).\left(x^2-3x+9\right)\) hoặc \(\left(x-3\right).\left(x^2+3x+9\right)\) thì mới ra được hằng đẳng thức nhé.

d) \(x^2-x-\frac{1}{4}\)

\(=-\left(x^2+x+\frac{1}{4}\right)\)

\(=-\left[x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)

\(=-\left(x+\frac{1}{2}\right)^2.\)

Chúc bạn học tốt!