Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x^2 + 5x + 6 )
x^2 + 6x - 1x + 6
phần dưới bạn tự làm nha! những bài kia cũng tương tự vậy thôi. muon biet them lat sgk có dạng bài đó đấy
Bài này lm sao dùng hằng đẳng thức đc bn,tùy câu thôi
a,\(x^2+5x-6\)
\(=x^2+6x-x-6\)
\(=x\left(x+6\right)-\left(x+6\right)\)
\(=\left(x+6\right)\left(x-1\right)\)
\(b,7x-6x^2-2\)
\(=-6x^2+7x-2\)
\(=-6x^2+3x+4x-2\)
\(=-3x\left(2x-1\right)+2\left(2x-1\right)\)
\(=\left(2x-1\right)\left(2-3x\right)\)
\(c,5x\left(x-1\right)-3x\left(x-1\right)\)
\(=x\left(x-1\right)\left(5-3\right)\)
\(=2x\left(x-1\right)\)
\(d,\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\)
\(=2x\left(4x+2\right)\)
\(=4x\left(2x+1\right)\)
\(d,x^6-y^6\)
\(=\left(x^2\right)^3-\left(y^2\right)^3\)
\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)\)
a) x2 + 5x - 6
= x2 + 6x - x - 6
= x(x + 6) - (x + 6)
= (x + 6)(x - 1)
b) 7x - 6x2 - 2
= -6x2 + 3x + 4x - 2
= 3x(1 - 2x) - 2(1 - 2x)
= (1 - 2x)(3x - 2)
c) 5x(x - 1) - 3x(x - 1)
= (x - 1)(5x - 3x)
= 2x(x - 1)
d) (3x + 1)2 - (x + 1)2
= (3x + 1 + x + 1)(3x + 1 - x - 1)
= 2x(4x + 2)
e) x6 - y6
= (x3)2 - (y3)2
= (x3 - y3)(x3 + y3)
= (x - y)(x2 + xy + y2)(x + y)(x2 - xy + y2)
Mấy bài kia phá tung tóe rồi rút gọn hết sức xong thay x vào, làm câu c thôi nhé:
c) \(C=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
riêng câu này ta thay x = 9 vào luôn, vậy ta có:
\(C=9^{14}-10\cdot9^{13}+10\cdot9^{12}-10\cdot9^{11}+...+10\cdot9^2-10\cdot9+10\)
\(=9^{14}-\left(9+1\right)\cdot9^{13}+\left(9+1\right)\cdot9^{12}-\left(9+1\right)\cdot9^{11}+...+\left(9+1\right)\cdot9^2-\left(9+1\right)\cdot9+10\)
\(=9^{14}-9^{14}-9^{13}+9^{13}+9^{12}-9^{12}-9^{11}+...+9^3+9^2-9^2-9+10\)
\(=-9+10\)
\(=1\)
a: \(\Leftrightarrow\dfrac{5x^2-13x+6}{A}=\dfrac{5x-3}{2x+5}\)
\(\Leftrightarrow\dfrac{5x^2-10x-3x+6}{A}=\dfrac{5x-3}{2x+5}\)
\(\Leftrightarrow A=\dfrac{\left(2x+5\right)\left(x-2\right)\left(5x-3\right)}{\left(5x-3\right)}=\left(2x+5\right)\left(x-2\right)\)
b: \(\Leftrightarrow\dfrac{x\left(x+4\right)}{A}=\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)}=\dfrac{x}{\left(2x-1\right)}\)
=>A=(x+4)(2x-1)
A=\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}\)\(=\frac{1}{x}-\frac{1}{x+4}=\frac{x+4-x}{x\left(x+4\right)}=\frac{4}{x^2+4x}\)
B=\(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x+5}=\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}=\frac{1}{x}\)
a) \(5x\left(\frac{1}{5}x-2\right)+3\left(6-\frac{1}{3}x^2\right)=12\)
=> \(x^2-10x+18-x^2=12\)
=> -10x + 18 = 12
=> -10x = -6
=> -5x = -3
=> x = 3/5
b) 7x(x - 2) - 5(x - 1) = 7x2 + 3
=> 7x2 - 14x - 5x + 5 = 7x2 + 3
=> 7x2 - 14x - 5x + 5 - 7x2 - 3 = 0
=> -19x + 2 = 0
=> -19x = -2
=> x = \(\frac{2}{19}\)
c) 2(5x - 8) - 3(4x - 5) = 4(3x - 4) + 11
=> 10x - 16 - 12x + 15 = 12x - 16 + 11
=> 10x - 16 - 12x + 15 - 12x + 16 - 11 = 0
=> (10x - 12x - 12x) + (-16 + 15 + 16 - 11) = 0
=> -14x + 4 = 0
=> -14x = -4
=> -7x = -2
=> x = 2/7
=> 5x3 - 4x2 + 7x - 2 - 5x3 + 5x2 + x2 = -11
=> 2x2 + 7x + 11 = 0
Giải phương trình trên máy tính ta có
X1 = vô nghiêm X2 = vô nghiệm
Vậy ............
Study well