Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
b) Ta có :
\(\left[\left(a+b\right)+\left(c+d\right)\right]^2=\left(a+b\right)^2+2\left(a+b\right)\left(c+d\right)+\left(c+d\right)^2\)
Áp dụng hằng đẳng thức tương tự với ba đa thức còn lại, ta được :
\(2\left(a+b\right)^2+2\left(a-b\right)^2+2\left(c+d\right)^2+2\left(c-d\right)^2\)
\(=2\left(a^2+2ab+b^2+a^2-2ab+b^2+c^2+2cd+d^2+c^2-2cd+d^2\right)\)
\(=4\left(a^2+b^2+c^2+d^2\right)\)
\(\Rightarrowđpcm\)
\(a.\) \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
\(\left(a-b\right)^2+2ab-2ab=\left(a+b\right)^2-4ab\)
\(\left(a-b\right)^2=a^2+2ab+b^2-4ab\)
\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(\left(a-b\right)^2=\left(a-b\right)^2\)
Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
Tương tự mấy câu kia
b: \(\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(=2a^2+2b^2+2c^2+2ab+2bc+2ac\)
\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(a^2+2ac+c^2\right)\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2\)
c: \(x^4+y^4-2\left(x^2+xy+y^2\right)^2\)
\(=\left(x^2+y^2\right)^2-2x^2y^2-2\left[\left(x^2+y^2\right)^2+2xy\left(x^2+y^2\right)+x^2y^2\right]\)
\(=-\left(x^2+y^2\right)^2-4x^2y^2-4xy\left(x^2+y^2\right)\)
\(=-\left(x^2+2xy+y^2\right)^2=-\left(x+y\right)^4\)
=>\(x^4+y^4+\left(x+y\right)^4=2\left(x^2+xy+y^2\right)^2\)
a(b+c)2+b(a+c)2+c(a+b)2-4abc=(b+c)(c+a)(a+b)
VT = a(b^2+2bc+c^2) + b(c^2 +2ac + a^2) + c(a^2 + 2ab + b^2) - 4abc
= ab^2 + 2abc + ac^2 + bc^2 + 2abc + ba^2 + ca^2 + 2abc + cb^2 - 4abc
= ab^2 + ac^2 + bc^2 + ba^2 + ca^2 + cb^2 + 2abc
VP = ( a+b)(b+c)(c+a)
= (ab + ac + b^2 + bc )( c+a )
= ab^2 + ac^2 + bc^2 + ba^2 + ca^2 + cb^2 + 2abc
Vậy VP=VT => a(b+c)^2+b(c+a)^2+c(a+b)^2−4abc=(a+b)(b+c)(c+a)
chúc bạn học tốt ạ
xét hiệu
\(\dfrac{a^2+b^2+c^2}{3}-\dfrac{\left(a+b+c\right)^2}{9}\ge0\)
<=> \(\dfrac{3\left(a^2+b^2+c^2\right)}{9}-\dfrac{\left(a+b+c\right)^2}{9}\ge0\)
<=>\(3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2ac-2bc\ge0\)
<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
<=> \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)
<=> (a-b)2 +(b-c)2 +(c-a)2 ≥ 0 (luôn đúng)
=> đpcm)
ta có (a+b)^3 =a^3 +b^3 +3ab(a+b)
=>[(a+b) +c ]^3 =(a+b)^3 +c^3 +3c(a+b)[a+b+c)
[(a+b) +c ]^3 = a^3+b^3 +3ab(a+b) +3c(a+b)(a+b+c)+c^3
[(a+b) +c ]^3 =a^3+b^3+c^3 +3(a+b)[ab+c.(a+b+c) ]
[(a+b) +c ]^3 = a^3+b^3+c^3 +3(a+b)[ ab+ca+cb+c^2]
[(a+b) +c ]^3 = a^3+b^3+c^3 +3(a+b)[ a(c+b) +c(b+c)]
[(a+b) +c ]^3 =a^3+b^3+c^3 +3(a+b)(b+c)(a+c) (vế trái)
Điều cần chứng minh giờ thì đã sáng tỏ! ^_^
a. Biến đổi vế phải, ta có:
(a+b)2- 4ab
= a2+2ab+b2-4ab
=a2+2ab-4ab+b2
= a2-2ab+b2
= (a-b)2
Vậy: ( a - b )2 = ( a + b )2 - 4ab
Mik chỉ làm đc câu a thui àk
a) Ta có: \(\left(a^2+b^2\right)^2-4a^2b^2=\left(a^2+b^2\right)^2-\left(2ab\right)^2\)
\(=\left(a^2+b^2-2ab\right)\left(a^2+b^2+2ab\right)=\left(a-b\right)^2.\left(a+b\right)^2\)( đpcm )
b) Ta có: \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
\(=\left(a-b+b-c\right)^3-3\left(a-b\right)\left(b-c\right)\left(a-b+b-c\right)+\left(c-a\right)^3\)
\(-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
\(=\left(a-c\right)^3-3\left(a-b\right)\left(b-c\right)\left(a-c\right)+\left(c-a\right)^3-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
\(=\left(a-c\right)^3+\left(c-a\right)^3-3\left(a-b\right)\left(b-c\right)\left(a-c\right)-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
\(=\left(a-c\right)^3-\left(a-c\right)^3+3\left(a-b\right)\left(b-c\right)\left(c-a\right)-3\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)
\(\Rightarrow\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)( đpcm )
1) Ta có: \(\left(a^2+b^2\right)^2-4a^2b^2\)
\(=a^4+2a^2b^2+b^4-4a^2b^2\)
\(=a^4-2a^2b^2+b^4\)
\(=\left(a^2-b^2\right)^2\)
\(=\left[\left(a-b\right)\left(a+b\right)\right]^2\)
\(=\left(a-b\right)^2\left(a+b\right)^2\)
2) Ta có: \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
\(=\left(a-b+b-c\right)\left[\left(a-b\right)^2-\left(a-b\right)\left(b-c\right)+\left(b-c\right)^2\right]+\left(c-a\right)^3\)
\(=\left(a-c\right)\left(a^2-2ab+b^2-ab+ac+b^2-bc+b^2-2bc+c^2\right)+\left(c-a\right)^3\)
\(=-\left(c-a\right)\left(a^2+3b^2+c^2-3ab+ac-3bc\right)+\left(c-a\right)\left(c^2-2ca+a^2\right)\)
\(=\left(c-a\right)\left(c^2-2ca+a^2-a^2-3b^2-c^2+3ab-ac+3bc\right)\)
\(=\left(c-a\right)\left(3ab+3bc-3b^2-3ac\right)\)
\(=3\left(c-a\right)\left(ab-b^2-ac+bc\right)\)
\(=3\left(c-a\right)\left[b\left(a-b\right)-c\left(a-b\right)\right]\)
\(=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
biến đổi vế phải thành vế trái, đơn giản thế cũng hỏi