K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2019

=2(x^2-x+1)+1 =2(x-1)^2+1

Vì (x-1)^2>=0 => 2(x-1)^2+1>=1 >0

Vậy đa thức vô nghiệm

23 tháng 4 2019

với mọi x thuộc Z ta có

2x2 - 2x sẽ lớn hơn hoặc bằng 0

mà 3>0 => 2x2 - 2x + 3>0 => đa thức này k có nghiệm

19 tháng 9 2023

a) Ta có:

B = (A + B) – A

= (x3 + 3x + 1) – (x4 + x3 – 2x – 2)

= x3 + 3x + 1 – x4 - x3 + 2x + 2

= – x4 + (x3 – x3) + (3x + 2x) + (1 + 2)

= – x4 + 5x + 3.

b) C = A - (A – C) 

= x4 + x3 – 2x – 2 –  x5 

= – x5 + x4 + x3 – 2x – 2.

c) D = (2x2 – 3) . A

= (2x2 – 3) . (x4 + x3 – 2x – 2)

= 2x2 . (x4 + x3 – 2x – 2) + (-3) .(x4 + x3 – 2x – 2)

= 2x2 . x4 + 2x2 . x3 + 2x2 . (-2x) + 2x2 . (-2) + (-3). x4 + (-3) . x3 + (-3). (-2x) + (-3). (-2)

= 2x6 + 2x5 – 4x3 – 4x2 – 3x4 – 3x3 + 6x + 6

= 2x6 + 2x5 – 3x4 + (-4x3 – 3x3) – 4x2+ 6x + 6

= 2x6 + 2x5 – 3x4 – 7x3 – 4x2+ 6x + 6.

d) P = A : (x+1) = (x4 + x3 – 2x – 2) : (x + 1)

Vậy P = x3 - 2

e) Q = A : (x2 + 1)

Nếu A chia cho đa thức x2 + 1 không dư thì có một đa thức Q thỏa mãn

Ta thực hiện phép chia (x4 + x3 – 2x – 2) : (x2 + 1)

Do phép chia có dư nên không tồn tại đa thức Q thỏa mãn

18 tháng 4 2019

P(x)=3x^4+2x^2+2

Ta có 3x^4 >=0 , 2x^2 >=0 =. P(x)>0 

Vậy P(x) vô nghiêm

Học tốt

18 tháng 4 2019

Ta có: P(x) = 4x3 + 3x4 - 2x2 - x3 + 4x2 - 3x3 + 2

P(x) = (4x3 - x3 - 3x3) + 3x4 - (2x2 - 4x2) + 2

P(x) = 3x4 + 2x2 + 2 \(\ge\)2 > 0

(vì 3x4 \(\ge\)0; 2x2 \(\ge\)0; 2 > 0)

=> Đa thức P(x) ko có nghiệm

19 tháng 4 2019

Chọn C

Ta có f(x) + g(x) = (2x2 - 5x - 3) + (-2x2 - 2x + 1) = -7x - 2

Cho -7x - 2 = 0 ⇒ x = -2/7

20 tháng 5 2021

Ta có 2x2 ≥ 0 với mọi x

➩ 2x2 + 3 ≥ 3 

Hay M(x) ≥ 3 

Vậy M(x) không có nghiệm

20 tháng 5 2021

Ta có 2x2≥0 với ∀ x

      3>0

=>2x2+3≥3 với ∀ x

=>2x2+3>0 với ∀ x

=>Đa thức 2x2+3 vô nghiệm

23 tháng 6 2020

??

\(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}}\)\(\Rightarrow2x^4+x^2\ge0\)\(\Rightarrow2x^4+x^2+2\ge2>0\)

Dấu "=" khi x=0

Vậy đa thức đã cho không có nghiệm

23 tháng 6 2020

2x4 + x2 + 2

Có : \(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}\forall x\Rightarrow}2x^4+x^2+2\ge2>0\forall x\)

=> Đa thức vô nghiệm 

4 tháng 4 2022

\(P\left(x\right)=x^4+2x^2+3=x^4+2x^2+1+2=\left(x^2+1\right)^2+2\ge2>0\forall x\)

Đặt P(x)=0

Vì \(x^4>=0\)

và \(2x^2>=0\)

nên P(x)=x4+2x2+3>=3>0

=>P(x) vô nghiệm

3 tháng 8 2021

A(x)+B(x)=2x-3x3+2x2+1+4x3+2x2-5

               = x3+4x2+2x-4

thay x=1 vào B(x) ta được

B(x)=4.13+2.13-5

      =4+2-5

     =1

3 tháng 8 2021

\(A\left(x\right)+B\left(x\right)=\left(x+2\right)\left(x^2+2x-2\right)\)

thay x=1 \(=>A\left(1\right)+B\left(1\right)=3\left(1+2-2\right)=3\)