K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

Điều kiện m khác 0

\(PT\left(1\right)\left\{{}\begin{matrix}x_1x_2=-m^2\left(1\right)\\x_1+x_2=10\left(2\right)\end{matrix}\right.\)

\(PT\left(2\right)\left\{{}\begin{matrix}x_3x_4=-\dfrac{1}{m^2}\left(3\right)\\x_3+x_4=-\dfrac{10}{m^2}\left(4\right)\end{matrix}\right.\)

với m khác 0 => x1, x2 khác 0

Lấy (2) chia (1)

\(\dfrac{x_1+x_2}{x_1x_2}=\dfrac{10}{-m^2}\Leftrightarrow\dfrac{x_1}{x_1x_2}+\dfrac{x_2}{x_1x_2}=\dfrac{1}{x_2}+\dfrac{1}{x_1}=-\dfrac{-10}{m^2}\)(5)

từ (1) \(m\ne0\Leftrightarrow\dfrac{1}{x_1.x_2}=-\dfrac{1}{m^2}\Leftrightarrow\dfrac{1}{x_1}.\dfrac{1}{x_2}=-\dfrac{1}{m^2}\)(6)

Từ (3) (4)(5)(6)

\(\left\{{}\begin{matrix}x_3.x_4=\dfrac{1}{x_1}.\dfrac{1}{x_2}\\x_3.+x_4=\dfrac{1}{x_1}+\dfrac{1}{x_2}\end{matrix}\right.\) => dpcm

13 tháng 4 2017

với m=0 => (1) có nghiệm x=0 sao nghịch đảo được xem lại không c/m được

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

28 tháng 2 2019

1, 

a) \(x^2-4x+m=0\)

\(\Delta=b^2-4ac=\left(-4\right)^2-4.1.m=16-4m\)

Để pt có nghiệm : \(\Delta\ge0\)

<=>\(16-4m\ge0\)

\(\Leftrightarrow16\ge4m\)

\(\Leftrightarrow m\le4\)

21 tháng 4 2020

Gọi x0 là nghiệm chung của 2 phương trình

Ta có:\(x_0^2+ax_0+bc=0;x_0^2+bx_0+ca=0\)

\(\Rightarrow\left(a-b\right)x_0=c\left(a-b\right)\)

Mà \(a\ne b\Rightarrow x_0=c\)

Gọi các nghiệm của phương trình x2 +ax + bc = 0 và x2 + bx + ac = 0 là x1 và x2

Theo Viet ta có:\(x_0x_1=bc;x_0x_2=ca\)

Mà \(x_0=c\ne0\Rightarrow x_1=b;x_2=a\)

Do b;c là các nghiệm của phương trình x2 +ax + bc = 0 nên b+c=-a => -c=a+b => a,b là các nghiệm của phương trình:

x2 - ( a+b ) x + ab = 0 hay x2 + cx + ab = 0

19 tháng 3 2017

Max nhiều =((

a) (Giải cụ thể hơn xíu nè!)

a = 1; b = -10; c = -m + 20

\(\Delta=b^2-4ac\)

     \(=\left(-10\right)^2-4.1.\left(-m+20\right)\)

     \(=100+4m-80\)

     \(=20+4m\)

Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow20+4m>0\Leftrightarrow m>-5\)

b/ Theo Vi-et ta có: \(P=x_1x_2=\frac{c}{a}=-m+20\)

Để pt có 2 nghiệm trái dấu \(\Leftrightarrow P< 0\Leftrightarrow-m+20< 0\Leftrightarrow m>20\)

c/ Theo Vi-et ta có: \(S=x_1+x_2=-\frac{b}{a}=10\)

                               \(P=-m+20\)

Để pt có 2 nghiệm dương \(\Leftrightarrow\hept{\begin{cases}\Delta\ge0\\P>0\\S>0\end{cases}}\Leftrightarrow\hept{\begin{cases}P>0\\S>0\end{cases}\Leftrightarrow\hept{\begin{cases}-m+20>0\\10>0\left(hiennhien\right)\end{cases}\Leftrightarrow}-m< 20}\)

18 tháng 3 2017

a) Để phương trình có 2 nghiệm phân biệt thì \(\Delta'>0\)

\(\Delta'=5+m\Leftrightarrow m>-5\)