Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,ĐK: \(x,y\ne-2\)
HPT<=> \(\left\{{}\begin{matrix}x\left(x+2\right)+y\left(y+2\right)=\left(x+2\right)\left(y+2\right)\left(1\right)\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x^2\left(x+2\right)^2+2xy\left(x+2\right)\left(y+2\right)+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)
=> \(2xy\left(x+2\right)\left(y+2\right)=0\)
<=>\(2xy=0\) (do x+2 và y+2 \(\ne0\))
<=> \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Tại x=0 thay vào (1) có: \(y\left(y+2\right)=2\left(y+2\right)\) <=> y= \(\pm2\) => y=2 (vì y khác -2)
Tại y=0 thay vào (1) có: \(x\left(x+2\right)=2\left(x+2\right)\) => x=2
Vậy HPT có 2 nghiệm duy nhất (2,0),(0,2)
2, ĐK: \(y\ne-1\)
HPT <=> \(\left\{{}\begin{matrix}x^2=2\left(x+3\right)\left(y+1\right)\left(1\right)\\\frac{3x^2}{y+1}=4-x\end{matrix}\right.\)
=> \(\frac{6\left(3+x\right)\left(y+1\right)}{y+1}=4-x\)
<=> 6(x+3)=4-x
<=> \(14=-7x\)
<=> \(x=-2\) thay vào (1) có \(4=2\left(y+1\right)\)
<=>y=1\(\)( tm)
Vậy hpt có một nghiệm duy nhất (-2,1)
3,\(\left\{{}\begin{matrix}x^2-y=y^2-x\left(1\right)\\x^2-x=y+3\left(2\right)\end{matrix}\right.\)
PT (1) <=> \(\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)
<=> (x-y)(x+y+1)=0
<=>\(\left[{}\begin{matrix}x=y\\y=-x-1\end{matrix}\right.\)
Tại x=y thay vào (2) có \(y^2-y=y+3\) <=> \(y^2-2y-3=0\) <=> (y-3)(y+1)=0 <=> \(\left[{}\begin{matrix}y=3\\y=-1\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Tại y=-1-x thay vào (2) có: \(x^2-x=-1-x+3\) <=> \(x^2=2\) <=> \(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\) => \(\left[{}\begin{matrix}y=-1-\sqrt{2}\\y=-1+\sqrt{2}\end{matrix}\right.\)
Vậy hpt có 4 nghiệm (3,3),(-1,-1), ( \(\sqrt{2},-1-\sqrt{2}\)),( \(-\sqrt{2},-1+\sqrt{2}\))
4,\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\left(1\right)\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\left(2\right)\end{matrix}\right.\)(đk:\(x\ne0,y\ne0\))
<=> \(\left\{{}\begin{matrix}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)=\frac{9}{2}\\\left(y+\frac{1}{y}\right)\left(x+\frac{1}{x}\right)=5\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+\frac{1}{x}=u\\y+\frac{1}{y}=v\end{matrix}\right.\)
Có \(\left\{{}\begin{matrix}u+v=\frac{9}{2}\\uv=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\v\left(\frac{9}{2}-v\right)=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left(v-\frac{5}{2}\right)\left(v-2\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left[{}\begin{matrix}v=\frac{5}{2}\\v=2\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\\\left[{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\end{matrix}\right.\)
Tại \(\left\{{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=2\\y+\frac{1}{y}=\frac{5}{2}\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)\left(y-\frac{1}{2}\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=1\\\left[{}\begin{matrix}y=2\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left[{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
Tại \(\left\{{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=\frac{5}{2}\\y+\frac{1}{y}=2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}\left(x-2\right)\left(x-\frac{1}{2}\right)=0\\\left(y-1\right)^2=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\\y=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left[{}\begin{matrix}x=\frac{1}{2}\\y=1\end{matrix}\right.\end{matrix}\right.\)
Vậy hpt có 4 nghiệm (1,2),( \(1,\frac{1}{2}\)) ,( 2,1),(\(\frac{1}{2},1\)).
10.
\(\left\{{}\begin{matrix}2x^2-3xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2xy-xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(2x-y+1\right)=0\\x^2+x+1=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\y=2x+1\end{matrix}\right.\\x^2+x+1=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=y^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=y^2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=x^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=\left(2x+1\right)^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\3x\left(x+1\right)=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=1\\\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2x+1\\x=0\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x=-1\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
bài 1:
b) đề như vầy hả :\(\left\{{}\begin{matrix}\left(x^2-1\right)y+\left(y^2-1\right)x=2\left(xy-1\right)\left(1\right)\\4x^2+y^2+2x-y-6=0\left(2\right)\end{matrix}\right.\)
\(Pt\left(1\right)\Leftrightarrow x^2y+xy^2-x-y-2xy+2=0\)
\(\Leftrightarrow xy\left(x+y\right)-\left(x+y\right)-2\left(xy-1\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(xy-1\right)-2\left(xy-1\right)=0\)
\(\Leftrightarrow\left(xy-1\right)\left(x+y-2\right)=0\Leftrightarrow\left[{}\begin{matrix}xy=1\\x+y=2\end{matrix}\right.\)
*xét \(xy=1\Leftrightarrow x=\dfrac{1}{y}\)thế vào Pt (2):\(\dfrac{4}{y^2}+y^2+\dfrac{2}{y}-y-6=0\)
\(\Leftrightarrow\dfrac{4+2y}{y^2}+\left(y+2\right)\left(y-3\right)=0\)\(\Leftrightarrow\left(y+2\right)\left(\dfrac{2}{y^2}+y-3\right)=0\)
\(\Leftrightarrow\left(y+2\right)\left(y^3-3y^2+2\right)=0\)\(\Leftrightarrow\left(y+2\right)\left(y-1\right)\left(y^2-2y-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-2\\y=1\\y=1-\sqrt{3}\\y=1+\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1\\x=-\dfrac{1+\sqrt{3}}{2}\\x=\dfrac{-1+\sqrt{3}}{2}\end{matrix}\right.\)
* xét x+y=2(tương tự thay x=2-y vào Pt (2))
câu 2:
ta đưa về PT ẩn x:\(x^2-x\left(y+1\right)+y^2-y-2=0\)
Pt phải có nghiệm ,xét \(\Delta=\left(y+1\right)^2-4\left(y^2-y-2\right)\ge0\)
\(\Leftrightarrow y^2-2y-3\le0\Leftrightarrow\left(y+1\right)\left(y-3\right)\le0\)
\(\Leftrightarrow-1\le y\le3\).
vì x,y thuộc Z ,lần luợt thay các giá trị của y vừa tìm được vào PT ban đầu ta được các cặp (x,y) t/m là (0;-1);(-1;0);(2;0);(0;2);(3;2);(2;3)
bài 3:
DKXĐ:\(\left\{{}\begin{matrix}2x^2-x\ge0\\2x-x^2\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le0\end{matrix}\right.\\0\le x\le2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{1}{2}\le x\le2\end{matrix}\right.\)
bình phương , self study
Chị lần sau nhớ tag em để em còn nhận được thông báo nhé, không thì ib :D
Giải: Sau khi đã sửa đề
\(HPT\Leftrightarrow\left\{{}\begin{matrix}xy+x+2y+2=xy+8\left(1\right)\\xy-x+2y-2=xy\left(2\right)\end{matrix}\right.\)
Lấy \(\left(1\right)-\left(2\right)\Rightarrow2x+4=8\Rightarrow x=2\)
Thay \(x=2\) vào (1)\(\Rightarrow\) \(4y+4=2y+8\Rightarrow y=2\)
Vậy...
Lời giải:
Từ PT(1) \(\Rightarrow \left[\begin{matrix} x+2y+1=0\\ x+2y+2=0\end{matrix}\right.\)
Nếu \(x+2y+1=0\)
PT \((2)\Leftrightarrow y(x+2y+1)-y^2+2y+1=0\)
\(\Leftrightarrow -y^2+2y+1=0\)
\(\Leftrightarrow y=1\pm \sqrt{2}\)
+) \(y=1+\sqrt{2}\rightarrow x=-1-2y=-3-2\sqrt{2}\)
+) \(y=1-\sqrt{2}\rightarrow x=-1-2y=-3+2\sqrt{2}\)
Nếu \(x+2y+2=0\)
PT \((2)\Leftrightarrow y(x+2y+2)-y^2+y+1=0\)
\(\Leftrightarrow -y^2+y+1=0\) \(\Rightarrow y=\frac{1\pm \sqrt{5}}{2}\)
+) \(y=\frac{1+\sqrt{5}}{2}\rightarrow x=-2y-2=-3-\sqrt{5}\)
+) \(y=\frac{1-\sqrt{5}}{2}\rightarrow x=-2y-2=-3+\sqrt{5}\)
Vậy...........
1/ĐK: x, y khác 0.
\(HPT\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=5\left(1\right)\\x^2y^2-2xy=x^2-y^2+1\left(2\right)\end{matrix}\right.\)
(2) \(\Leftrightarrow x^2y^2-x^2+y^2-1=2xy\)
\(\Leftrightarrow\left(x^2+1\right)\left(y^2-1\right)=2\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)\left(y-\frac{1}{y}\right)=2\) (*)
Mặt khác từ (1) ta có: \(\left(x^2+2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=5\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=5\) (**)
Đặt \(x+\frac{1}{x}=a;y-\frac{1}{y}=b\) kết hợp (*) và (**) thu được:
\(\left\{{}\begin{matrix}a^2+b^2=5\\ab=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=5\\ab=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^2=9\\ab=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\ab=2\end{matrix}\right.\left(3\right);\left\{{}\begin{matrix}a+b=-3\\ab=2\end{matrix}\right.\left(4\right)\)
Xét (3): Theo định lý Viet đảo, a, b là hai nghiệm của pt:
\(t^2-3t+2=0\) giải ra rồi xét các trường hợp (giải quá, em ko làm)
Xét (4): Theo định lý Viet đảo, a, b là hai nghiệm của pt:
\(t^2+3t+2=0\) giải ra rồi xét các trường hợp (giải quá, em ko làm)
Is that true?
\(\left\{{}\begin{matrix}\left(2-\frac{1}{2x+y}\right)\sqrt{y}=2\\\left(2+\frac{1}{2x+y}\right)\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{y}-\frac{\sqrt{y}}{2x+y}=2\\2\sqrt{x}+\frac{\sqrt{x}}{2x+y}=2\end{matrix}\right.\Leftrightarrow2\left(\sqrt{x}-\sqrt{y}\right)+\frac{\sqrt{x}-\sqrt{y}}{2x+y}=0\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(2-\frac{1}{2x+y}\right)=0\)
\(+,\sqrt{x}=\sqrt{y}\Leftrightarrow x=y\Rightarrow\left\{{}\begin{matrix}\left(2-\frac{1}{3x}\right)\sqrt{x}=2\\\left(2+\frac{1}{3x}\right)\sqrt{x}=2\end{matrix}\right.\Rightarrow x=0\left(l\right)\)
\(+,\frac{1}{2x+y}=2\Rightarrow l\)
\(\Rightarrow hptvn\)
?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương
giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!
Tranh thủ làm 1, 2 bài rồi ăn cơm:
1/ Đặt \(m=n-2008>0\)
\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương
\(\Rightarrow369+2^m\) là số chính phương
m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương
\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)
b/
\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)
\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)
\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)
\(\Rightarrow x=y=4\)
\(x,y>0;n\in N,n>2\).
- Áp dụng bất đẳng thức Caushy ta có:
\(x^n+x^n+...+x^n+y^n\) (có \(\left(n-1\right)\) \(x^n\)) \(\ge n\sqrt[n]{x^{n\left(n-1\right)}.y^n}=n.x^{n-1}.y\)
\(\Rightarrow\left(n-1\right)x^n+y^n\ge n.x^{n-1}.y^n\left(1\right)\)
- Tương tự: \(\left(n-1\right)y^n+x^n\ge n.y^{n-1}.x\left(2\right)\)
- Từ (1), (2) suy ra:
\(n\left(x^n+y^n\right)\ge n.xy\left(x^{n-2}+y^{n-2}\right)\)
\(\Rightarrow\left(x^n+y^n\right)\ge xy\left(x^{n-2}+y^{n-2}\right)\left(đpcm\right)\)
- Dấu "=" xảy ra \(\Leftrightarrow x^n=y^n;x,y>0\Leftrightarrow x=y\)
Cách khác:
$x^n+y^n\geq xy(x^{n-2}+y^{n-2})$
$\Leftrightarrow x^n+y^n-x^{n-1}y-xy^{n-1}\geq 0$
$\Leftrightarrow (x^n-x^{n-1}y)+(y^n-xy^{n-1})\geq 0$
$\Leftrightarrow x^{n-1}(x-y)-y^{n-1}(x-y)\geq 0$
$\Leftrightarrow (x-y)(x^{n-1}-y^{n-1})\geq 0$
$\Leftrightarrow (x-y)(x-y)(x^{n-2}+x^{n-3}y+...+y^{n-2})\geq 0$
$\Leftrightarrow (x-y)^2(x^{n-2}+x^{n-3}y+...+y^{n-2})\geq 0$
(luôn đúng với mọi $x,y>0$ và $n\in\mathbb{N}>2$)
Ta có đpcm
Dấu "=" xảy ra khi $x=y$