K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

A= x2-4x+5

<=> x2-2*x*2+22+1

<=> ( x-2)2+1 vì (x-2)>= 0 

=> A >= 1 (dương)

B x2 -x+1

<=> x2- 2*x *1/2 +(1/2)2+3/4

<=> ( x-1/2)2+3/4

vì ( x-1/2)2 >= 0

=> B>= 3/4 (dương)

2 tháng 7 2018

1/ Sửa đề a+b=1

\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

Thay a+b=1 vào M ta được:

\(M=1-3ab+3ab\left[1-2ab\right]+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)

2/ Đặt \(A=\frac{2n^2+7n-2}{2n-1}=\frac{\left(2n^2-n\right)+\left(8n-4\right)+2}{2n-1}=\frac{n\left(2n-1\right)+4\left(2n-1\right)+2}{2n-1}=n+4+\frac{2}{2n-1}\)

Để \(A\in Z\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Ta có bảng:

2n-11-12-2
n103/2 (loại)-1/2 (loại)
     

Vậy n={1;0}

2 tháng 7 2018

câu 4c phải là x-1 mới đúng chứ

28 tháng 9 2017

A=x2-6x+10

\(A=\left(x-3\right)^2+1>1\)

\(\Rightarrow A\) luôn dương

28 tháng 8 2020

A = x2 - 6x + 10

= ( x2 - 6x + 9 ) + 1 

= ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

B = x2 + x + 5

= ( x2 + x + 1/4 ) + 19/4

= ( x + 1/2 )2 + 19/4 ≥ 19/4 > 0 ∀ x ( đpcm )

C = 4x2 + 4x + 2 

= 4( x2 + x + 1/4 ) + 1

= 4( x + 1/2 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

D = ( x - 3 )( x - 5 ) + 4

= x2 - 8x + 15 + 4

= ( x2 - 8x + 16 ) + 3 

= ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

E = x2 - 2xy + 1 + y2

= ( x2 - 2xy + y2 ) + 1 

= ( x - y )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )

24 tháng 6 2017

làm x mũ 2 như nào vậy

24 tháng 6 2017

x- x +1 

x2  - 2.x .\(\frac{1}{2}\) + \(\left(\frac{1}{2}\right)^2\)  _  \(\frac{3}{4}\)   = (x- \(\frac{1}{2}\)  \(\ge\)0 => (x -  1/2)^ 2 - 3/4 \(\ge0\) =>  luôn dương  với mọi x

b,x2+x+2

x2  +  2.x .1/2 +(1/2)^2 - 7/4 =(x+1/2)^2  \(\ge\)0 => (x +  1/2)^ 2 - 7/4 \(\ge0\) =>  luôn dương  với mọi x

c,-a2+a-3

-(a2-a+3)=.-(a- 2a  .\(\frac{1}{2}\) + \(\left(\frac{1}{2}\right)^2\)  _  \(\frac{3}{4}\)   =  -(a \(\frac{1}{2}\)  \(\ge\)0 => ( a-  1/2)^ 2 - 3/4 \(\ge0\) =>  luôn dương  với mọi a

d, 3x2-x+1:4x+2x-13

tương tựevhuô,i9o

24 tháng 10 2020

A = -x2 + x - 3 = -( x2 - x + 1/4 ) - 11/4 = -( x - 1/2 )2 - 11/4 ≤ -11/4 < 0 ∀ x ( đpcm )

B = -4x2 + 4x - 5 = -( 4x2 - 4x + 1 ) - 4 = -( 2x - 1 )2 - 4 ≤ -4 < 0 ∀ x ( đpcm )

C = -x2 + 4x - 6 = -( x2 - 4x + 4 ) - 2 = -( x - 2 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )

10 tháng 10 2015

a. 

= (2x)2.2x+1 +2

=(2x+1)2+2(luôn dương)

b. =x2 +2x.1/2 +1/4+3/4

    = (x+1/2)2+3/4 (luôn dương)

c. 2C=(2x)2-4x1/2 +1/4+7/4

       = (2x-1/2)2+7/4

r bạn suy ra C luôn dương :>

13 tháng 10 2015

A= 4x2-4x+3 = 4x2-4x+1+2 = (4x2-4x+1)+2 = (2x-1)2 +2 

            Vì  (2x-1)>=0 với mọi x nên (2x-1)2 +2 >0 với mọi x 

B= x2+x+1 =  x2+x+1/4 +3/4 = (x2+x+1/4) +3/4 = (x+1/2)2 +3/4

           Vì  (x+1/2)>=0 với mọi x nên  (x+1/2)2 +3/4 > 0 với mọi x 

C=2x2-x+2 = 2(x2-1/2x+1) = 2(x2-1/2x + 1/16 +15/16)  = 2[(x-1/4)2 + 15/16] = 2(x-1/4)2 + 15/8

               Vì  2(x-1/4)2  >=0 với mọi x nên  2(x-1/4)2 + 15/8 > 0 với mọi x 

 

17 tháng 8 2016

A=(x-3)(x-5)+2=x^2-5x-3x+15+2=x^2-8x+17=x^2-8x+16+1=(x-4)^2+1>0

B=x^2-5x+7=x^2-5/2*2x+(5/2)^2-(5/2)^2+7=(x-5/2)^2+3/4>0

C=x^2-xy+y^2=x^2-1/2*2xy+1/4y^2-1/4y^2+y^2=(x-1/2y)^2+3/4y^2>0

17 tháng 8 2016

A=(x-3)(x-5)+2

=x2-8x+15+2

=x2-8x+16+1

=(x-4)2+1

vì (x-4)2 lớn hơn hoặc = 0 nên (x-4)2+1 dương