K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

a, \(a^4+b^4-a^3b-ab^3=a^3\left(a-b\right)-b^3\left(a-b\right)\)

\(=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\)

Mà \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a;b\\a^2+ab+b^2=\left(a+\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\forall a;b\end{cases}}\)

\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Rightarrow a^4+b^4-a^3b-ab^3\ge0\Leftrightarrow a^4+b^4\ge a^3b+ab^3\)

Dấu "=" xảy ra khi a = b

b, \(a^3-3a^2+4a+1=a\left(a^2-4a+4\right)+a^2+1=a\left(a-2\right)^2+a^2+1>0\left(\forall a>0\right)\)

c, \(a^4+b^2+2-4ab=\left(a^4-2a^2b^2+b^4\right)+\left(2a^2b^2-4ab+2\right)\)

\(=\left(a^2-b^2\right)^2+2\left(ab-1\right)^2\ge0\)

\(\Rightarrow a^4+b^4+2\ge4ab\)

Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=1\\a=b=-1\end{cases}}\)

18 tháng 3 2019

thank you nhá

8 tháng 2 2019

1 ) Áp dụng BĐT Cô - si cho a ; b dương , ta có :

\(a+b\ge2\sqrt{ab}\Rightarrow\left(a+b\right)^2\ge4ab\Rightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\left(đpcm\right)\)

2 ) \(\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}=\dfrac{3}{2xy}+\dfrac{3}{x^2+y^2}+\dfrac{1}{2xy}=3\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)+\dfrac{1}{2xy}\)

\(\ge3.\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=\dfrac{3.4}{1}+\dfrac{1}{\dfrac{1}{2}}=12+2=14\)

( áp dụng BĐT Cô - si cho 2 số x ; y dương và BĐT phụ \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Vậy ...

27 tháng 3 2018

a)\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

b,c tương tự

d)Áp dụng bđt AM-GM ta được

\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4a^4b^4c^4}=4a^2bc\)

TT\(\Rightarrow a^4+b^4+b^4+c^4\ge4ab^2c\)

\(a^4+b^4+c^4+c^4\ge4abc^2\)

Cộng vế theo vế ta được \(4\left(a^4+b^4+c^4\right)\ge4\left(a^2bc+ab^2c+abc^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\left(đpcm\right)\)

27 tháng 3 2018

d)

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

\(\Leftrightarrow a^4+b^4+c^4-a^2bc-ab^2c-abc^2\ge0\)

\(\Leftrightarrow2a^4+2b^4+2c^4-2a^2bc-2ab^2c-2abc^2\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+2a^2b^2+\left(b^2-c^2\right)^2+2b^2c^2+\left(c^2-a^2\right)^2+2a^2c^2-2a^2bc-2b^2ac-2c^2ab\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2+\left(a^2b^2+b^2c^2-2b^2ac\right)+\left(b^2c^2+c^2a^2-2c^2abc\right)+\left(a^2b^2+c^2a^2-2a^2ab\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2+\left(ab-bc\right)^2+\left(bc-ac\right)^2+\left(ab-ac\right)^2\ge0\)

Luôn đúng với mọi a , b , c

\(VT=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)

\(=\dfrac{1}{2}\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)-3>=\dfrac{9}{2}-3=\dfrac{3}{2}\)

10 tháng 8 2017

1) Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên

\(a< b+c\)

\(\Leftrightarrow a^2< ab+ac\)

Chứng minh tương tự: \(b^2< ab+bc\)

\(c^2< ac+bc\)

Cộng vế theo vế các BĐT vừa chứng minh ta được đpcm

2) \(x^4-4x+5=x^4-4x^2+4+4x^2-4x+1=\left(x^2-2\right)^2+\left(2x-1\right)^2\ge0\)

Không xảy ra đẳng thức nên ta suy ra đpcm

29 tháng 3 2022

Dự đoán dấu "=" xảy ra khi \(a=b=c=1\)

Khi đó \(\frac{a^4}{b+2}=\frac{1}{3}\)

Ta cần ghép \(\frac{a^4}{b+2}\)với hạng tử \(k\left(b+2\right)\)thỏa mãn khi Cô-si thì dấu "=" xảy ra khi \(a=b=1\)

Lại có \(b+2=3\)

Đồng thời khi Cô-si dấu "=" xảy ra khi \(\frac{a^4}{b+2}=k\left(b+2\right)\)hay \(\frac{1}{3}=k.3\)\(\Leftrightarrow k=\frac{1}{9}\)

Áp dụng BĐT Cô-si cho 2 số dương \(\frac{a^4}{b+2}\)và \(\frac{b+2}{9}\), ta có:

\(\frac{a^4}{b+2}+\text{​​}\frac{b+2}{9}\ge2\sqrt{\frac{a^4}{b+2}.\frac{b+2}{9}}=\frac{2a^2}{3}\)

Tương tự, ta có \(\frac{b^4}{c+2}+\text{​​}\frac{c+2}{9}\ge2\sqrt{\frac{b^4}{c+2}.\frac{c+2}{9}}=\frac{2b^2}{3}\)và 

\(\frac{c^4}{a+2}+\text{​​}\frac{a+2}{9}\ge2\sqrt{\frac{c^4}{a+2}.\frac{a+2}{9}}=\frac{2c^2}{3}\)

CỘng vế theo vế từng BĐT, ta được \(P+\frac{a+2+b+2+c+2}{9}\ge\frac{2\left(a^2+b^2+c^2\right)}{3}\)

\(\Leftrightarrow P+\frac{\left(a+b+c\right)+6}{9}\ge2\)(vì \(a^2+b^2+c^2=3\)\(\Leftrightarrow P\ge2-\frac{\left(a+b+c\right)+6}{9}\)(1)

Ta chứng minh BĐT phụ \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)(với \(a,b,c>0\))

Thật vậy, BĐT này \(\Leftrightarrow\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\le3a^2+3b^2+3c^2\)\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

Vậy BĐT phụ được chứng minh \(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=\sqrt{3.3}=3\)(2)

Từ (1) và (2) \(\Rightarrow P\ge2-\frac{3+6}{9}=1\)\(\Rightarrow min_P=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

29 tháng 3 2022

t ko bic

16 tháng 4 2018

Ý em là a^2+b^2+2>= 2(a+b) ?

Đề <=> a^2-2a+1+b^2-2b+1>=0

<=> (a-1)^2 + (b-1)^2>=0 (đúng)

=> bđt đúng