Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
\(\Leftrightarrow x^2+y^2+z^2+3\ge2x+2y+2z\)
\(\Leftrightarrow x^2+y^2+z^2+3-2x-2y-2z\ge0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (luôn đúng)
Vậy \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
Từ đề bài suy ra:\(x^2+y^2+z^2-2xy+2xz-2yz\ge0\)
\(\left(x-y\right)^2+\left(x+z\right)^2+\left(y-z\right)^2\ge0\)
Đẳng thức này đúng với mọi số x,y,z
Vậy \(x^2+y^2+z^2\ge2\left(xy-xz+yz\right)\) (đpcm)
Biến đổi tương đương:
\(\Leftrightarrow\dfrac{x^2+y^2}{xy}\ge2\)
\(\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã được chứng minh
\(\dfrac{x^2+1}{x}=\dfrac{x^2}{x}+\dfrac{1}{x}=x+\dfrac{1}{x}\)
Theo bất đẳng thức Cô - si, ta có:
\(x+\dfrac{1}{x}\ge2\sqrt{x.\dfrac{1}{x}}=2\sqrt{1}=2\)
Vậy \(\dfrac{x^2+1}{x}\ge2\)
Có : \(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow2x^2+2y^2\ge x^2+2xy+y^2\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2\ge2\)
Dấu " = " tại \(x=y=1\)