K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2016

Có : \(\left(x-y\right)^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow2x^2+2y^2\ge x^2+2xy+y^2\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2\ge2\)

Dấu " = " tại \(x=y=1\)

6 tháng 4 2017

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

\(\Leftrightarrow x^2+y^2+z^2+3\ge2x+2y+2z\)

\(\Leftrightarrow x^2+y^2+z^2+3-2x-2y-2z\ge0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (luôn đúng)

Vậy \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

6 tháng 4 2017

cảm ơn bạn nhiều

27 tháng 3 2016

Từ đề bài suy ra:\(x^2+y^2+z^2-2xy+2xz-2yz\ge0\)

\(\left(x-y\right)^2+\left(x+z\right)^2+\left(y-z\right)^2\ge0\)

Đẳng thức này đúng với mọi số x,y,z

Vậy \(x^2+y^2+z^2\ge2\left(xy-xz+yz\right)\) (đpcm)

28 tháng 3 2016

x,y,z phải là các cạnh trong tam giác chơ

NV
23 tháng 1 2021

Biến đổi tương đương:

\(\Leftrightarrow\dfrac{x^2+y^2}{xy}\ge2\)

\(\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow x^2+y^2-2xy\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã được chứng minh

Cách khác so với anh Nguyễn Việt Lâm

Ta có: \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=2\)  (đpcm)

NV
23 tháng 1 2021

BĐT này sai nha bạn.

Nó chỉ đúng khi \(x>0\)

23 tháng 1 2021

Thế bn giải giúp mk ik Nguyễn Việt Lâm Giáo viên

23 tháng 1 2021

\(\dfrac{x^2+1}{x}=\dfrac{x^2}{x}+\dfrac{1}{x}=x+\dfrac{1}{x}\)

Theo bất đẳng thức Cô - si, ta có:

\(x+\dfrac{1}{x}\ge2\sqrt{x.\dfrac{1}{x}}=2\sqrt{1}=2\)

Vậy \(\dfrac{x^2+1}{x}\ge2\)

 

23 tháng 1 2021

1 cách chứng minh khác (chứng minh tương đương)

\(\dfrac{x^2+1}{x}\ge2\\ \Leftrightarrow x^2+1\ge2x\\ \Leftrightarrow x^2-2x+1=\left(x-1\right)^2\ge0\left(\text{luôn đúng}\right)\)

Vậy BĐT ban đầu được chứng minh