Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)\left(x^3+bx^2+ax-2\right)\)
\(=x^4+bx^3+ax^2-2x-x^3-bx^2-ax+2\)
\(=x^4+x^3\left(b-1\right)+x^2\left(a-b\right)-x\left(a+2\right)+2\)
Đồng nhất với đa thức \(x^4-3x+2\), ta có:
\(b-1=0,a-b=0,a+2=3\)
\(\Rightarrow a=1,b=1\)
Chúc bạn học tốt.
Phiển bạn bổ sung đề ! Ko phải chép lại đề đâu, bạn chỉ cần sửa nội dung thôi , hoặc nếu ko bt cách sửa nội dung thì bạn có thể trả lời xuống dưới này.
đề là cái j ko thấy mặt mũi cái đề sao bít mà làm!! ~_~ @@
576586787697890780899635654767546
Ta có: ab(a+b)-\(\frac{ab\left(a^3+b^3\right)}{a^2+2ab+b^2}\)
=\(ab\left(a+b\right)\)-\(\frac{ab\left(a^3+b^3\right)}{\left(a+b\right)^2}\)
=\(\frac{ab\left(a+b\right)^3}{\left(a+b\right)^2}\)-\(\frac{ab\left(a^3+b^3\right)}{\left(a+b\right)^2}\)
=\(\frac{ab\left[\left(a+b\right)^3-\left(a^3+b^3\right)\right]}{\left(a+b\right)^2}\)
=\(\frac{ab.3ab\left(a+b\right)}{\left(a+b\right)^2}\)
=\(\frac{3\left(ab\right)^2}{a+b}\)
Làm trc cho 2 câu cuối
c) \(a^2-b^2-4a+4b\)
\(=\left(a+b\right)\left(a-b\right)-4\left(a-b\right)\)
\(=\left(a-b\right)\left[\left(a+b\right)-4\right]\)
d) \(a^2+2ab+b^2-2a-2b+1\)
\(=\left(a+b\right)^2-2\left(a+b\right)+1\)
\(=\left(a+b\right)\left[\left(a+b\right)-2\right]+1\)