Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)
=b(a−1)a(a+1)−a(b−1)b(b+1)
Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
=> b(a−1)a(a+1);a(b−1)b(b+1)⋮6⇒a3b−ab3⋮6⇒a3b−ab3⋮6
mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha
a )n = 0 => (1) = 9 .1 + 18 = 27 chia hết cho 27
n = 1 => (1) = 9 .10 + 18 = 108 chia hết cho 27
đặt k = n , ta giả sử 9.10^k + 18 chia hết cho 27
ta chứng minh 9.10^(k + 1) +18 chia hết cho 27
= 10.9.10^(k) +18 = 9.10^k + 18 + 9.9.10^k = { 9.10^k + 18 } + { 81.10^k }
cả 2 nhóm đều chia hết cho 27 => đpcm
b ) - Với \(n=1\) thì \(16^n-15n-1=16-15-1=0⋮225\)
- Gỉa sử \(16^k-15k-1⋮225\)
- Ta chứng minh \(16^{k+1}-15\left(k+1\right)-1⋮225\)
Thực vậy : \(16^{k+1}-15\left(k+1\right)-1=16.16^k-15k-15-1\)
\(=\left(16^k-15k-1\right)+15.16^k-15\)
Theo giả thuyết qui nạp \(16^k-15k-1⋮225\)
Còn \(15.16^k-15=15\left(16^k-1\right)⋮15.15=225\)
Vậy \(16^n-15n-1⋮225\)
20n+16n-3n-1 \(⋮\)321
vì 323=17.19
Ta thấy : 20n+16n-3n-1
=(20n-1) + (16n-3n)
20n-1\(⋮\)19 với n chẵn
\(\Rightarrow\)(20n-1) + ( 16n -3n)\(⋮\)19 (1)
Mặt khác : 20n+16n-3n-1
=( 20n-3n) + ( 16n-1)
20n-3n\(⋮\)17 với n chẵn
16n-1 \(⋮\)17 với n chẵn
\(\Rightarrow\)(20n-3n) + ( 16n-1) \(⋮\)17 (2)
Từ (1) và (2) \(\Rightarrow\)20n+16n-3n-1 \(⋮\)17\(\times\)19
\(\Rightarrow\)20n+16n-3n-1 \(⋮\)323 ( đpcm)
Ta có : n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= 2n2 - 2n2 - 3n - 2n
= -5n
Mà n nguyên nên -5n chia hết cho 5
a, Ta có
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n
=-5n chia hết cho 5
=> DPCM
b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)
Lại có (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)
=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0
=> (2m-3)(3n-2)-(3m-2)(2n-3)=0
=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5
=> DPCM
A = a3 - a
A = a.(a2 - 1)
A = a.(a-1).(a+1)
A = (a-1).a.(a+1)
Vì (a-1).a.(a+1) là tích 3 số tự nhiên liên tiếp nên (a-1).a.(a+1) chia hết cho 2 và 3
Do (2,3) = 1 => (a-1).a.(a+1) chia hết cho 6 => A chia hết cho 6
Câu A lm đc thì các câu B,C,D trở nên rất đơn giản
B = a3 - a + 6a
Do a3 - a chia hết cho 6, 6a chia hết cho 6
=> B chia hết cho 6
C = a3 + 11a
C = a3 - a + 12a
Do a3 - a chia hết cho 6, 12a chia hết cho 6
=> C chia hết cho 6
D = a3 - 19a
D = a3 - a - 18a
Do a3 - a chia hết cho 6, 18a chia hết cho 6
=> D chia hết cho 6
Ta có: \(n^3-28n=n^3-4n-24n\)
Ta xét \(n^3-4n=n\left(n^2-2^2\right)=n\left(n-2\right)\left(n+2\right)\)
Nên tồn tại ít nhất 1 số chia hết cho 2, cho 4 và cho 6 nên biểu thức trên chia hết cho : 2 . 4 . 6 =48;
Do n là số chẵn nên n có dạng là 2k , xét 24n ta có:
\(24n=24.2k=48k⋮48\)
Hai số chia hết cho 48 nên hiệu của chúng chia hết cho 48;
VẬY...
CHÚC BẠN HỌC TỐT.....
Đặt n=2m (m E N)
Ta có:an-bn=(a2)m-(b2)m
=(a2-b2).S (S=am-1+am-2.b+...+abm-2+bm-1)
=(a-b)(a+b).S
=>an-bn chia hết cho a+b (đpcm)
Ta có:an-bn
=(a-b)n
Mà:n là chẵn
\(\Rightarrow\)(a-b) chia hết (a+b)
Mk ko chắc là có đúng ko nữa nhưng dù sao cũng chúc bạn học tốt!