K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2016

Đặt n=2m (m E N)

Ta có:an-bn=(a2)m-(b2)m

                =(a2-b2).S          (S=am-1+am-2.b+...+abm-2+bm-1)

                =(a-b)(a+b).S

=>an-bn chia hết cho a+b (đpcm) 

27 tháng 8 2016

Ta có:an-bn

           =(a-b)n

Mà:n là chẵn

\(\Rightarrow\)(a-b) chia hết (a+b)

Mk ko chắc là có đúng ko nữa nhưng dù sao cũng chúc bạn học tốt!

27 tháng 11 2016

Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)

=b(a−1)a(a+1)−a(b−1)b(b+1)

Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6

=> b(a−1)a(a+1);a(b−1)b(b+1)6a3bab36a3b−ab36

 

27 tháng 11 2016

mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha

21 tháng 7 2016

a )n = 0 => (1) = 9 .1 + 18 = 27 chia hết cho 27 
n = 1 => (1) = 9 .10 + 18 = 108 chia hết cho 27 
đặt k = n , ta giả sử 9.10^k + 18 chia hết cho 27 
ta chứng minh 9.10^(k + 1) +18 chia hết cho 27 
= 10.9.10^(k) +18 = 9.10^k + 18 + 9.9.10^k = { 9.10^k + 18 } + { 81.10^k } 
cả 2 nhóm đều chia hết cho 27 => đpcm 

21 tháng 7 2016

b ) - Với \(n=1\) thì \(16^n-15n-1=16-15-1=0⋮225\)

      - Gỉa sử \(16^k-15k-1⋮225\)

      - Ta chứng minh \(16^{k+1}-15\left(k+1\right)-1⋮225\)

   Thực vậy : \(16^{k+1}-15\left(k+1\right)-1=16.16^k-15k-15-1\)

\(=\left(16^k-15k-1\right)+15.16^k-15\)

Theo giả thuyết qui nạp \(16^k-15k-1⋮225\)

Còn \(15.16^k-15=15\left(16^k-1\right)⋮15.15=225\)

Vậy \(16^n-15n-1⋮225\)

 

19 tháng 3 2017

20n+16n-3n-1  \(⋮\)321

vì 323=17.19

Ta thấy : 20n+16n-3n-1

            =(20n-1) + (16n-3n)

             20n-1\(⋮\)19 với n chẵn

 \(\Rightarrow\)(20n-1) + ( 16-3n)\(⋮\)19      (1)

Mặt khác : 20n+16n-3n-1

              =( 20n-3n) + ( 16n-1)

               20n-3n\(⋮\)17 với n chẵn 

               16n-1  \(⋮\)17 với n chẵn 

\(\Rightarrow\)(20n-3n) + ( 16n-1) \(⋮\)17     (2)

Từ (1) và (2) \(\Rightarrow\)20n+16n-3n-1 \(⋮\)17\(\times\)19

\(\Rightarrow\)20n+16n-3n-1 \(⋮\)323 ( đpcm)

18 tháng 7 2017

Ta có : n(2n - 3) - 2n(n + 1)

= 2n2 - 3n - 2n2 - 2n

= 2n2 - 2n2 - 3n - 2n

= -5n 

Mà n nguyên nên -5n chia hết cho 5

18 tháng 7 2017

a, Ta có 

n(2n-3)-2n(n+1)=2n2-3n-2n2-2n

=-5n chia hết cho 5

=> DPCM

b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)

Lại có  (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)

=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0

=> (2m-3)(3n-2)-(3m-2)(2n-3)=0

=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5 

=> DPCM

25 tháng 6 2016

A = a3 - a

A = a.(a2 - 1)

A = a.(a-1).(a+1)

A = (a-1).a.(a+1)

Vì (a-1).a.(a+1) là tích 3 số tự nhiên liên tiếp nên (a-1).a.(a+1) chia hết cho 2 và 3

Do (2,3) = 1 => (a-1).a.(a+1) chia hết cho 6 => A chia hết cho 6

Câu A lm đc thì các câu B,C,D trở nên rất đơn giản

B = a3 - a + 6a

Do a3 - a chia hết cho 6, 6a chia hết cho 6

=> B chia hết cho 6

C = a3 + 11a

C = a3 - a + 12a

Do a3 - a chia hết cho 6, 12a chia hết cho 6

=> C chia hết cho 6

D = a3 - 19a

D = a3 - a - 18a

Do a3 - a chia hết cho 6, 18a chia hết cho 6

=> D chia hết cho 6

25 tháng 6 2016

giúp mk nha mấy bn

8 tháng 7 2017

Ta có: \(n^3-28n=n^3-4n-24n\)

Ta xét \(n^3-4n=n\left(n^2-2^2\right)=n\left(n-2\right)\left(n+2\right)\)

Nên tồn tại ít nhất 1 số chia hết cho 2, cho 4 và cho 6 nên biểu thức trên chia hết cho : 2 . 4 . 6 =48;

Do n là số chẵn nên n có dạng là 2k , xét 24n ta có:

\(24n=24.2k=48k⋮48\)

Hai số chia hết cho 48 nên hiệu của chúng chia hết cho 48;

VẬY...

CHÚC BẠN HỌC TỐT.....

8 tháng 7 2017

thank you bạn nhé!