Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: A = 4a2 + 4a
=> A = 4a(a + 1)
Vì 4 chia hết cho 4
a(a+1) chia hết cho 2
=> A chia hết cho 8
b,Ta có: a5 = a4+1 có chữ số tận cùng giống chữ số tận cùng của n
=> a5 - a có chữ số tận cùng bằng 0
=> a5 - a chia hết cho 5 hay B chỉa hết cho 5
a) n2 +3n -7 là bội của n+3 => n2 +3n-7 chia hết cho n+3
=> n(n+3)-7 chia hết cho n+3
mà n(n+3) chia hết cho n+3 => 7 cũng chia hết cho n+3
=> n+3 thuộc Ư(7)={1,-1,7,-7}
Lập bảng
n+3 1 -1 7 -7
n -2 -4 4 -10
Vậy n thuộc {-2;-4;4;-10}
Với \(a\in Z\)
Ta có:\(P=4a^2+4a\)
\(\Leftrightarrow P=4a\left(a+1\right)\)
Vì \(\hept{\begin{cases}4⋮4\\\left[a\left(a+1\right)\right]⋮2\end{cases}}\)
Nên: \(P⋮8\)
Vậy với\(a\in Z\) thì \(P=\left(4a^2+4a\right)⋮8\) (đpcm)
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon
Dễ mà. Sử dụng tính chất phân phối