\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}\)không thuộc N (làm theo bất đẳng thức)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

Ta có:

1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)

Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2

   1/9 + 1/10 + 1/11 <3x1/9 = 1/3

   1/12 + 1/13 +1/14 < 3x1/12 = 1/4

   1/15 + 1/16 < 3 x 1/15 = 1/5

Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)

Lập luận tương tự có:

A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16

Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)

Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.

26 tháng 9 2015

Ta có :

\(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{n^3}<\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{4.5.6}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\)

\(=\frac{1}{1.2}-\frac{1}{n\left(n+1\right)}=\frac{1}{2}-\frac{1}{n\left(n+1\right)}\)

Vì n > 2 nên \(\frac{1}{n\left(n+1\right)}\le\frac{1}{6}\)

Do đó \(\frac{1}{2}-\frac{1}{n\left(n+1\right)}<\frac{1}{4}\)

=> ĐPCM

19 tháng 3 2017

cần ko tôi giúp cho

19 tháng 3 2017

50A=\(\left(\frac{49}{1}+.......+\frac{1}{49}\right)49:2\)

50A= 1201

A=1201:50

A=\(\frac{1201}{10}\)=120.1

mà 120,1 ko phải số tự nhiên mà là số thập phân

=>A ko là số tự nhiên

3 tháng 4 2020

Ta có : \(A=\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\)

=> \(5A=\frac{1}{5}+\frac{2}{5^2}+...+\frac{n}{5^n}+...+\frac{11}{5^{11}}\)

Lấy 5A trừ A theo vế ta có :

5A - A = \(\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{n}{5^n}+...+\frac{11}{5^{11}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\right)\)

4A = \(\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)-\frac{11}{5^{12}}\)

Đặt B = \(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\)

=> 5B = \(1+\frac{1}{5}+...+\frac{1}{5^{10}}\)

Lấy 5B trừ B ta có : 

=> 5B - B = \(\left(1+\frac{1}{5}+...+\frac{1}{5^{10}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)\)

=> 4B =\(1-\frac{1}{5^{11}}\)

=> B = \(\frac{1}{4}-\frac{1}{5^{11}.4}\)

Khi đó 4A = \(\frac{1}{4}-\frac{1}{5^{11}.4}-\frac{1}{5^{12}}\)

=> A = \(\frac{1}{16}-\left(\frac{1}{5^{11}.16}+\frac{1}{5^{12}.4}\right)< \frac{1}{16}\left(\text{ĐPCM}\right)\)

cậu ơi , mình quên không ghi 1 dữ liệu ạ 

n thuộc N 

V ậy có cần phải chỉnh sửa ở trong bài làm không ạ?????

12 tháng 2 2019

Giải:

Các cặp phân số bằng nhau lập được từ đẳng thưc 3.4 = 6.2 là :

  \(\frac{3}{6}=\frac{2}{4}\)\(\frac{6}{2}=\frac{4}{2}\)\(\frac{4}{6}=\frac{2}{3}\)\(\frac{3}{2}=\frac{6}{4}\)

 Vậy ...