![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=16^n-15n-1=\left(16^n-1^n\right)-15n\)
Áp dụng hằng đẳng thức phụ :
\(a^k-b^k=\left(a-b\right)\left(a^{k-1}+a^{k-2}b+a^{k-3}b^2+.....+ab^{k-2}+b^{k-1}\right)\)
ta có : \(16^n-1^n=\left(16-1\right)\left(16^{n-1}+16^{n-2}+.....+16^2+16+1\right)\)
\(=15\left(16^{n-1}+16^{n-2}+.....+16^2+16+1\right)⋮15\)
Do đó \(16^n-1^n⋮15\)
Mà \(15n⋮15\) nên \(A=\left(16^n-1^n\right)-15n⋮15\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt Un = 16^n-15n-1
- Xét n = 1 , ta có : U1 = 16^1 - 15*1 - 1 =0 chia hết cho 225
- Giả sử Un chia hết cho 225 với n = k nào đó ( k >=1), tức là : Uk = 16^k -15k -1 chia hết cho 225
Giờ ta chỉ cần chứng minh U[k + 1] = 16^(k + 1 ) -15(k + 1) -1 chia hết cho 225 là được
**Thật vậy ta có 16^(k + 1 ) -15(k + 1) -1 = 16*16^k - 15k - 15 - 1 = 16^k -15k -1 + 15*16^k -15=Uk + 15(16^k -1) (1) Ở đây, đã có Uk chia hết cho 225 rồi, ta thấy chỉ cần chứng minh 16^k -1 chia hết cho 15 nữa là được
_________________-
Với việc chứng minh Vk = 16^k - 1 chia hết cho 15
- Xét k = 1 , ta có V1 = 15 chia hết cho 15
- Giả sử Vk chia hết cho 15 với k = h nào đó (h>= 1), tức là Vh = 16^h -1 chia hết cho 15
Giờ ta chỉ cần chứng minh V[h + 1] = 16^(h + 1) - 1 chia hết cho 15 là được
*** Thật vậy tacó 16^(h+1) - 1 = (16^h)*16 - 1 = 16^h - 1 + 15*16^h = Vh + 15*16^h chia hết cho 15 (2)
______________
Vậy từ (1) và (2) ta có được điều phãi chứng minh
16 đồng dư với 1(mod 15)
=>16n đồng dư với 1(mod 15)
=>16n-1 đồng dư với 0(mod 15)
=>16n-1 chia hết cho 15
mà 15n chia hết cho 15
=>16n-15n-1 chia hết cho 15(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=16^n-15n-1\)
\(A=16^n-1^n-15n\)
Có \(16^n-1^n⋮\left(16-1\right)=15\)
\(15n⋮15\)
\(\Rightarrow A⋮15\)
Công thức \(a^n-b^n⋮\left(a-b\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
16^n - 15n - 1 =16^n-15n-1
= 15 .[ (16^(n-1)+16^(n-2)+...+1] - 15n
=15 . [ 16^(n-1)+16^(n-2)+...+1-n]
=15 .{ [ 16^(n -1)]+[16^(n-2) -1]+...+(16-1)}
Ta có : 16^(n-1) -1\(⋮\)15
16^(n-2) -1\(⋮\)15
.....
16 -1 \(⋮\)15
=>[16^(n-1) -1]+[16^(n-2) -1]+...+(16-1) =15k (k\(\in\)N)
=>16^n-15n-1 = 15 . 15k = 225 k\(⋮\)225
(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn xét hai trường hợp n=0 và n khác 0 nhé
nếu n=0 thì A=0 chia hết cho15