Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: So Sánh
a) Ta có: \(2^{100}=2^{10^{10}}=1024^{10}\)
\(10^{30}=10^{3\cdot10}=1000^{10}\)
mà \(1024^{10}>1000^{10}\)
nên \(2^{100}>10^3\)
b) Ta có: \(5\cdot8^{25}=5\cdot2^{75}\)
\(128^{11}=2^{77}=4\cdot2^{75}\)
mà \(5\cdot2^{75}>4\cdot2^{75}\)
nên \(5\cdot8^{25}>128^{11}\)
c) Ta có: \(8\cdot27^6=8\cdot3^{18}\)
\(9^{10}=3^{20}=9\cdot3^{18}\)
mà \(8\cdot3^{18}< 9\cdot3^{18}\)
nên \(8\cdot27^6< 9^{10}\)
d) Ta có: \(2^{100}=2^{69}\cdot2^{31}\)
\(=2^{31}\cdot2^{63}\cdot2^6\)
\(=2^{31}\cdot\left(2^9\right)^7\cdot\left(2^2\right)^3\)
\(=2^{31}\cdot512^7\cdot4^3\)
Ta có: \(10^{31}=2^{31}\cdot5^{31}\)
\(=2^{31}\cdot5^{28}\cdot5^3\)
\(=2^{31}\cdot\left(5^4\right)^7\cdot5^3\)
\(=2^{31}\cdot625^7\cdot5^3\)
Ta có: \(512^7< 625^7\)
\(4^3< 5^3\)
Do đó: \(512^7\cdot4^3< 625^7\cdot5^3\)
\(\Leftrightarrow2^{31}\cdot512^7\cdot4^3< 2^{31}\cdot625^7\cdot5^3\)
hay \(2^{100}< 10^{31}\)
Gửi tạm trước 2 câu !
\(a,\text{ }3^2\cdot\frac{1}{243}\cdot81^2\cdot3^{-3}=3^2\cdot\frac{1}{3^5}\cdot\left(3^4\right)^2\cdot\frac{1}{3^3}=3^2\cdot\frac{1}{3^5}\cdot3^8\cdot\frac{1}{3^3}=3^2=9\)\(b,\text{ }\frac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\frac{3^{10}\cdot\left(3\cdot5\right)^5}{\left(5^2\right)^3\cdot\left(-3\cdot3\right)^7}=\frac{3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3^{15}\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3}{-5}\)
Trả lời :
\(a,\text{ }3^2\cdot\frac{1}{243}\cdot81^2\cdot3^{-3}=3^2\cdot\frac{1}{3^5}\cdot\left(3^4\right)^2\cdot\frac{1}{3^3}=3^2\cdot\frac{1}{3^5}\cdot3^8\cdot\frac{1}{3^3}=3^2=9\)\(b,\text{ }\frac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\frac{3^{10}\cdot\left(3\cdot5\right)^5}{\left(5^2\right)^3\cdot\left(-3\cdot3\right)^7}=\frac{3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3^{15}\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3}{-5}\)
b)Ta có:
\(17^{20}=17^{4.5}=\left(17^4\right)^5=83521^5>71^5\)
c)Ta có:
\(0,3^{20}=\left(0,3^2\right)^{10}=0,09^{10}< 0,1^{10}\)
d)Ta có:
\(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2}\right)^{40}\)
\(\left(\frac{1}{8}\right)^{13}=\left(\frac{1}{2}\right)^{39}\)
Vì \(\left(\frac{1}{2}\right)^{40}>\left(\frac{1}{2}\right)^{39}\)
nên \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{8}\right)^{13}\)
e)Ta có:
\(3^{21}=3^{20}.3=9^{10}.3\)
\(2^{31}=2^{30}.2=8^{10}.2\)
Vì \(9^{10}.3>8^{10}.2\)
\(\Rightarrow3^{21}>2^{31}\)
Bây giờ tạm gọi các biểu thức ở mỗi bài lần lượt là A;B;C;...
a/\(A=3^2.\frac{1}{3^5}.3^8.\frac{1}{3^3}=3^2=9\)
b/\(B=\frac{3^{10}.3^5.5^5}{-5^6.3^{14}}=\frac{-3}{5}\)
c/\(C=2^3+3.1-\frac{1}{2^2}.2^2+\frac{2^2}{2}.2^3=8+3-1+16=26\)
d/\(D=\frac{3^4}{2^8}.\frac{2^{12}}{3^8}=\frac{2^4}{3^4}=\frac{16}{81}\)
e/\(E=\frac{-31^3}{2^9}.\frac{2^{20}}{31^4}=\frac{-2^{11}}{31}=\frac{-2048}{31}\)
f/\(F=\frac{-3^5}{2^{10}}.\frac{2^{20}}{3^{10}}=\frac{-2^{10}}{3^5}=\frac{-1024}{243}\)
a)\(VT=\left(-\dfrac{1}{8}\right)^{100}=\dfrac{1}{8^{100}}=\dfrac{1}{\left(2^3\right)^{100}}=\dfrac{1}{2^{300}}\)
\(VP=\left(-\dfrac{1}{4}\right)^{200}=\dfrac{1}{\left(2^2\right)^{200}}=\dfrac{1}{2^{400}}\)
\(\Rightarrow VT>VP\)
b) \(VT=4^{100}=\left(2^2\right)^{100}=2^{200}< 2^{202}=VP\)
c) \(VT=5^{2000}=\left(5^2\right)^{1000}=25^{1000}>10^{1000}=VP\)
d) \(VT=31^5< 32^5=\left(2^5\right)^5=2^{25}\)
\(VP=17^7>16^7=\left(2^4\right)^7=2^{28}\)
\(VP>VT\)
\(=2^{31}+2^{30}+2^{32}=2^{30}\left(2^2+2+1\right)=2^{30}\cdot7⋮7\)