K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 2 2023

Lời giải:
$2021^{2019}+2019^{2021}=2021^{2019}+2019^{2019}+2019^{2021}-2019^{2019}$

$=(2021^{2019}+2019^{2019})+2019^{2019}(2019^2-1)$

$=(2021+2019)(2021^{2018}-....+2019^{2018})+2019^{2019}(2019-1)(2019+1)$

$=4040(2021^{2018}-...+2019^{2018})+2019^{2019}.2018.2020$

$=2020[2(2021^{2018}-...+2019^{2018})+2018.2019^{2019}]\vdots 2020$

17 tháng 9 2020

b) \(\left(a^{2019}+b^{2019}\right)^2=\left(a^{2018}+b^{2018}\right)\left(a^{2020}+b^{2020}\right)\Leftrightarrow2a^{2019}b^{2019}=a^{2018}a^{2020}+a^{2020}b^{2018}\Leftrightarrow2ab=a^2+b^2\Leftrightarrow a=b\).

Do a, b dương nên a = b = 1.

Câu a thì bạn áp dụng BĐT Svacxo

28 tháng 2 2020

Theo đề bài ta có :

\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)

\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)

Thay \(x=1\) vào (1) ta có :

\(F\left(1\right)=-4\)

\(\Leftrightarrow1+a+b+c=-4\)

\(\Leftrightarrow a+b+c=-5\)

Thay \(x=-2\) vào (2) ta có :

\(F\left(-2\right)=5\)

\(\Leftrightarrow-8+4a-2b+c=5\)

\(\Leftrightarrow4a-2b+c=13\)

Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)

....

7 tháng 3 2021

Ta có x = 2020

=> x + 1 = 2021

A = x2021 - 2021x2020 + .... + 2021x - 2021

= x2021 - (x + 1)x2020 + .... + (x + 1)x - (x + 1)

= x2021 - x2021 - x2020 + .... + x2 + x - x + 1

= 1

Vậy A = 1

7 tháng 3 2021

Ta có : \(x=2020\Rightarrow x+1=2021\)

\(A=x^{2021}-\left(x+1\right)x^{2020}+\left(x+1\right)x^{2019}-\left(x+1\right)x^{2018}+...-\left(x+1\right)x^2+\left(x+1\right)x-2021\)

= x2021 - x2021 - x2020  + x2020 + x2019 - x2019 - x2018 + ... - x3 - x2 + x+ x - 2021 = x - 2021 

mà x = 2020 hay 2020 - 2021 = -1 

Vậy với x = 2020 thì A = -1

DD
19 tháng 5 2021

Ta có: 

\(\left(3a-2b+c\right)^2=9a^2+4b^2+c^2+2\left(3ac-6ab-2bc\right)\)

\(\Rightarrow b^2=9a^2+4b^2+c^2\)

(vì \(3a-3b+c=0\Leftrightarrow3a-2b+c=-b\)\(6ab+2bc-3ac=0\))

\(\Leftrightarrow9a^2+3b^2+c^2=0\)

\(\Leftrightarrow a=b=c=0\)

Khi đó: \(P=\left(-1\right)^{2019}+\left(-1\right)^{2020}+\left(-1\right)^{2021}=-1\)

19 tháng 5 2021

Ta có: 

(3a−2b+c)2=9a2+4b2+c2+2(3ac−6ab−2bc)

⇒b2=9a2+4b2+c2

(vì 3a−3b+c=0⇔3a−2b+c=−b6ab+2bc−3ac=0)

⇔9a2+3b2+c2=0

⇔a=b=c=0

Khi đó: P=(−1)2019+(−1)2020+(−1)2021=−1

NV
20 tháng 1 2019

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{ab+ac+bc}{abc}\right)=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc\right)+c\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-b\\a=-c\\b=-c\end{matrix}\right.\)

Đến đây thì nghi ngờ bạn chép sai đề biểu thức R, lẽ ra phải là dấu nhân mới tính được, nếu ko thì kết quả vẫn còn 2 ẩn

\(R=\left(a^{2017}+b^{2017}\right)\left(b^{2019}+c^{2019}\right)\left(c^{2021}+a^{2021}\right)\)

Thế này mới chính xác, kết quả \(R=0\)

NV
4 tháng 5 2020

\(2x^4-x^3-2x^2-x+2=0\)

\(\Leftrightarrow2x^4-4x^3+2x^2+3x^3-6x^2+3x-4+2x^2-4x+2=0\)

\(\Leftrightarrow2x^2\left(x^2-2x+1\right)+3x\left(x^2-2x+1\right)+2\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(2x^2+3x+2\right)\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x=2=0\left(vn\right)\\x^2-2x+1=0\Rightarrow x=1\end{matrix}\right.\)

Bạn tự thay \(x=1\) vào tính A