Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có: (2x-3).(6-2x)=0
=>(2x-3)=0 hoặc (6-2x)=0
+, nếu 2x-3=0 thì x= 2/3 (1)
+, nếu 6-2x=0 thì x= 3 (2)
vì x thuộc Z nên từ (1) và(2) => x=3
vậy x=3
a/(Sửa đề bài) A= 1/2 + 2/22 + 3/23 + 4/24 +..+ 100/2100 => 1/2A = 1/22 + 2/23 + 3/24 +..+ 100/2101 => A - 1/2A = 1/2 + 2/22 +..+ 100/2100 - 1/22 - 2/23 -..- 100/2101 => 1/2A = 1/2 + 1/22 + 1/23 +..+ 1/2100 - 100/2101 Gọi riêng cụm (1/2 + 1/22 +..+ 1/2100) là B => 2B = 1 + 1/2 + 1/22 +..+ 1/299 => 2B-B = B = 1+ 1/2 +1/22 +..+ 1/299 - 1/2 - 1/22 -..- 1/2100 = 1 - 1/2100 => 1/2A = 1 - 1/2100 - 100/2101 Có 1/2A < 1 => A < 2 =>ĐPCM b/ => 1/3C = 1/32 + 2/33 + 3/34 +..+ 100/3101 => C - 1/3C = 2/3C = 1/3 + 2/32 +..+ 100/3100 - 1/32 - 2/33 -..- 100/3101 = 1/3 + 1/32 + 1/33 +..+ 1/3100 - 100/3101 Gọi riêng cụm (1/3 + 1/32 +..+ 1/3100) là D => 3D = 1 + 1/3 +..+ 1/399 => 3D - D = 2D = 1 + 1/3 +..+1/399 - 1/3 -1/32 -..- 1/3100 = 1 - 1/3100 => 2/3C *2 = 4/3C = 1 - 1/3100 - 200/3101 Có 4/3C < 1 => C<3/4 => ĐPCM Tạm thời thế đã, giải tiếp đc con nào mình sẽ gửi sau :)
Có thể mình hơi phũ tí nhưng mình bảo đảm một thế kỉ sau sẽ không ai ngồi giải hết đống bài này cho bạn đâu, hỏi từng câu thôi
P/s: chắc bạn đánh mỏi tay lắm
Đặt \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}=A\)
ta có :\(\frac{1}{2^2}=\frac{1}{2\cdot2}=\frac{1}{4}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
\(...\)
\(\frac{1}{1990^2}=\frac{1}{1990\cdot1990}< \frac{1}{1989\cdot1990}\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{2\cdot3}+...+\frac{1}{1989\cdot1990}\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1989}-\frac{1}{1990}\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\)
\(\Rightarrow A< \frac{3}{4}\left(ĐPCM\right)\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}< \frac{3}{4}\)
hk tốt #
Ta có \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{1990^2}< \frac{1}{1989.1990}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}\)
\(< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1989}-\frac{1}{1990}\)
\(< \frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}< \frac{3}{4}\)
\(\Rightarrow\)Bài toán được chứng minh
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
Bài a:
1.3.5......199 = 1.2.3.4......199.200/2.4.6.....200
= 1.2.3.4.........199.200/1.2.3.4....100.2100
=101.102.....200/2.2......2.2
=101/2 . 102/2 . 103/2 . ..... . 200/2
Câu a) Mik chữa lại một chút
Ta có: \(\frac{1}{2^2}< \frac{1}{1\cdot2}\); \(\frac{1}{3^2}< \frac{1}{2\cdot3}\);.......; \(\frac{1}{100^2}< \frac{1}{99\cdot100}\)
Suy ra: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)
Suy ra: \(VT< \frac{1}{1}-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy : \(VT+1< 1+1=2\)
\(A=\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+\dfrac{1}{2^5}-\dfrac{1}{2^6}\)
\(2A=1-\dfrac{1}{2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+\dfrac{1}{2^4}-\dfrac{1}{2^5}\)
\(2A+A=\left(1-\dfrac{1}{2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+\dfrac{1}{2^4}-\dfrac{1}{2^5}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+\dfrac{1}{2^5}-\dfrac{1}{2^6}\right)\)
\(3A=1-\dfrac{1}{2^6}\Leftrightarrow A=\dfrac{1}{3}-\dfrac{1}{3.2^6}< \dfrac{1}{3}\left(đpcm\right)\)